
Journal of Artificial Intelligence Research 71 (2021) 993-1048 Submitted 02/2021; published 08/2021

Bribery and Control in Stable Marriage

Niclas Boehmer niclas.boehmer@tu-berlin.de
Technische Universität Berlin,
Algorithmics and Computational Complexity,
Berlin, Germany

Robert Bredereck robert.bredereck@hu-berlin.de
Technische Universität Berlin,
Algorithmics and Computational Complexity,
Berlin, Germany, and
Humboldt-Universität zu Berlin, Institut für Informatik,
Berlin, Germany

Klaus Heeger heeger@tu-berlin.de

Rolf Niedermeier rolf.niedermeier@tu-berlin.de

Technische Universität Berlin,

Algorithmics and Computational Complexity,

Berlin, Germany

Abstract

We initiate the study of external manipulations in Stable Marriage by considering
several manipulative actions as well as several manipulation goals. For instance, one goal
is to make sure that a given pair of agents is matched in a stable solution, and this may be
achieved by the manipulative action of reordering some agents’ preference lists. We present
a comprehensive study of the computational complexity of all problems arising in this way.
We find several polynomial-time solvable cases as well as NP-hard ones. For the NP-hard
cases, focusing on the natural parameter “budget” (that is, the number of manipulative
actions one is allowed to perform), we also conduct a parameterized complexity analysis
and encounter mostly parameterized hardness results.

1. Introduction

In the Stable Marriage problem, we have two sets of agents, each agent has preferences
over all agents from the other set, and the goal is to find a matching between agents of the
one set and agents of the other set such that no two agents prefer each other to their assigned
partners. In this paper, we study the manipulation of a Stable Marriage instance by an
external agent that is able to change the set of agents or (parts of) their preferences. To
motivate our studies, consider the following example.

Due to the high demand from students, Professor X decides to implement a central
matching scheme using Stable Marriage to assign interested students to final-year
projects offered by X’s group: Every term X asks each of her group members to propose a
project. Subsequently, projects are put online and interested students are asked to submit
their preferences over projects, while group members are asked to submit their preferences
over the students. Afterwards, a stable matching of group members/projects and students

c©2021 AI Access Foundation. All rights reserved.

Boehmer, Bredereck, Heeger, & Niedermeier

is computed and implemented.1 As the submitted preferences are visible to all group mem-
bers, two days before the deadline, one group member realizes that in the currently only
stable matching he is not matched to the student with whom he already started thinking
about his proposal. That is why, in order to be matched to his preferred student in at least
some stable matching, he motivates two so far non-participating students that were unsure
whether to do their final project this year or next year to register already this year. After
this change, another group member notices that she is now matched to her least preferred
choice in some of the matchings that are currently stable but she already has an idea how
to change this: She quickly visits two of her fellow group members and tells a story about
how great two of the registered students performed in her least year’s tutorial. In this way,
she convinces them to rank these two students higher in their preferences. On the last day
before the deadline, Professor X realizes that there currently exist multiple stable match-
ings. As X believes that this may cause unnecessary discussions on which stable matching
to choose, X tells the two newest group members who anyway know only few of the students
how they should change their preferences.

Another application of the non-bipartite version of Stable Marriage (called Sta-
ble Roommates), which might be easily susceptible to external manipulation arises in
the context of P2P networks. This affects, in particular, the BitTorrent protocol for con-
tent distribution (Lebedev, Mathieu, Viennot, Gai, Reynier, & de Montgolfier, 2007; Gai,
Mathieu, de Montgolfier, & Reynier, 2007). Here, users rank each other based on some
technical data, e.g., their download and upload bandwidth and based on the similarity of
their interests. However, a user may easily add new users by simply entering the network
multiple times with different accounts, thereby influencing the computed matching.

Looking at further applications of Stable Marriage and corresponding generaliza-
tions in the context of matching markets, there is clear evidence of external manipulations
in modern applications. For instance, surveys reported that in college admission systems in
China, Bulgaria, Moldova, and Serbia, bribes have been performed in order to gain desir-
able admissions (Heyneman, Anderson, & Nuraliyeva, 2008; Liu & Peng, 2015). Focusing
on the most basic scenario Stable Marriage, we initiate a thorough study of manipula-
tive actions (bribery and control) from a computational complexity perspective. Notably,
bribery scenarios have also been used as a motivation in other papers around Stable Mar-
riage, e.g., when finding robust stable matchings (Chen, Skowron, & Sorge, 2019) or when
studying strongly stable matchings in the Hospitals/Residents problem with ties (Irving,
Manlove, & Scott, 2003).

External manipulation may have many faces such as deleting agents, adding agents, or
changing agents’ preference lists. We consider three different manipulation goals and five
different manipulative actions.

We introduce the manipulation goals Constructive-Exists, Exact-Exists, and Exact-
Unique, where Constructive-Exists is the least restrictive goal and asks for modifications
such that a desired agent pair is contained in some stable matching. More restrictively, Ex-

1. Notably, there is a wide spectrum of literature concerned with finding a (stable) matching of students
to final-year projects/supervisors (see Manlove, 2013, Chapter 5.5 for a survey). A central mechanism
for finding a (stable) matching of students to final-year projects has been implemented at the University
of Glasgow (Manlove, 2013), the University of York (Kazakov, 2001), and several other universities
(Hussain, Gamage, Sagor, Tariq, Ma, & Imran, 2019; Anwar & Bahaj, 2003).

994

Bribery and Control in Stable Marriage

act-Exists asks for modifications such that a desired matching is stable. Most restrictively,
Exact-Unique requires that a desired matching becomes the only stable matching.

As manipulative actions, we investigate Swap, Reorder, DeleteAcceptability , Delete,
and Add. The actions Swap and Reorder model bribery through an external agent. While
a single Reorder action allows to completely change the preferences of an agent (modeling
a briber who can “buy an agent”), a Swap action is more fine-granular and only allows to
swap two neighboring agents in some agent’s preference list (modeling a briber who has to
slightly convince agents where the costs/effort to convince an agent of some preferences is
larger if the preferences are further away from the agent’s true preferences). For both ac-
tions, the external agent might actually change the true preferences of the influenced agent,
for example, by advertising some possible partner. However, in settings where the agents’
preferences serve as an input for a centralized mechanism computing a stable matching
which is subsequently implemented and cannot be changed, it is enough to bribe the agents
to cast untruthful preferences. Delete and Add model control of the instance. They are
useful to model an external agent, i.e., the organizer of some matching system, with the
power to accept or reject agents to participate or to change the participation rules. While a
Delete (resp. Add) action allows to delete (resp. add) an agent to the instance, a DeleteAc-
ceptability action forbids for a specific pair of agents the possibility to be matched to each
other and to be blocking. The latter can be seen as a hybrid between bribery and control
because it can model an external agent that changes acceptability rules or it can model a
briber who convinces an agent that another agent is unacceptable at some cost.

We conduct a complete analysis of all fifteen combinations of our five manipulative
actions and three manipulation goals. Note, however, that for the two actions Delete and
Add the definition of Exact-Exists and Exact-Unique introduced above cannot be directly
applied, which is why we propose an adapted definition in Section 2.4.

Related Work. Since its introduction (Gale & Shapley, 1962), Stable Marriage has
been intensely studied by researchers from different disciplines and in many contexts (see,
e.g., the surveys of Gusfield & Irving, 1989; Knuth, 1976; Manlove, 2013).

A topic related to manipulation in stable matchings is the study of strategic behavior,
which focuses on the question whether agents can misreport their preferences to fool a given
matching algorithm to match them to a better partner. Numerous papers have addressed
the question of strategic behavior for different variants of computing stable matchings,
matching algorithms, types of agents’ preferences and restrictions on the agents that are
allowed to misreport their preferences (e.g., Aziz, Seedig, & von Wedel, 2015; Hosseini,
Umar, & Vaish, 2021; Pini, Rossi, Venable, & Walsh, 2011; Roth, 1982; Teo, Sethuraman,
& Tan, 2001; Shen, Tang, & Deng, 2018; see Manlove, 2013, Chapter 2.9 for a survey).
This setting is related to ours in the sense that the preferences of agents are modified to
achieve a desired outcome, while it is fundamentally different with respect to the allowed
modifications and their goal: In the context of strategic behavior an agent is only willing
to change its preferences if the agent directly benefits from it. Notably, in the context of
strategic behavior, Gonczarowski (2014) investigated how all agents from one side together
can alter their preferences (including to declare some agents unacceptable) in order to
achieve that a given matching is the unique stable matching. This goal corresponds to our
Exact-Unique setting. However, while Gonczarowski (2014) allows for arbitrary changes in

995

Boehmer, Bredereck, Heeger, & Niedermeier

the preferences of all agents from one side including the deletion of the acceptability of agent
pairs, in the problems considered in this paper we always allow the briber to influence all
agents and only either allow for reordering the preferences arbitrarily (Reorder) or deleting
the acceptability of agent pairs (DeleteAcceptability) (and aim to minimize the number of
such manipulations).

Generally speaking, using our manipulative action Swap combined with an appropriate
manipulation goal, it is possible to model most computational problems where a single agent
or a group of agents wants to fool an algorithm by misreporting their preferences: In order
to do so, we set the budget such that the preferences of the agents from the cheating group
can be modified arbitrarily. Further, we introduce dummy agents that are always matched
among themselves in any stable matching (see Lemma 7). We add these dummy agents
between each pair of consecutive agents in the preferences of all non-manipulating agents
such that the budget is not sufficient to swap two non-dummy agents in the preferences
of these agents. While this reduction shows how Swap can model computational problems
related to strategic behavior of a group of agents, as already mentioned, the goals typically
considered in the study of strategic behavior differ significantly from the ones studied in
our paper. In the context of strategic behavior, the focus of a cheating group usually lies
on misreporting their preferences such that all of them are matched to a better partner in
a matching returned by a specific matching algorithm (as done, e.g., by Aziz et al., 2015;
Pini et al., 2011; Roth, 1982; Teo et al., 2001), while our focus lies on making a specific pair
or matching stable.

While we are interested in finding ways to influence a profile to change the set of stable
matchings, finding robust stable matchings (Chen et al., 2019; Mai & Vazirani, 2018a, 2018b)
corresponds to finding stable matchings such that a briber cannot easily make the matching
unstable. For instance, Chen et al. (2019) introduced the concept of d-robustness: A
matching is d-robust if it is stable in the given instance and remains stable even if d arbitrary
swaps in preference lists are performed. One motivation for their study of d-robust stable
matchings is that d-robust stable matchings withstand bribers which may perform up to d
swaps.

Conceptually, our work is closely related to the study of bribery and control in elections
(see Faliszewski & Rothe, 2016 for a survey). In election control problems (Bartholdi III,
Tovey, & Trick, 1992), the goal is to change the structure of a given election, e.g., by modify-
ing the candidate or voter set, such that a designated candidate becomes the winner/looser
of the resulting election. In bribery problems (Faliszewski, Hemaspaandra, & Hemaspaan-
dra, 2009), the briber is allowed to modify the votes in the election to achieve the goal.
Most of the manipulative actions we consider are inspired by either some control operation
or bribery action already studied in the context of voting.

Our manipulation goals are also related to problems previously studied in the stable
matching literature: For example, the Constructive-Exists problem with given budget zero
reduces to the Stable Pair problem, which aims at deciding whether a given agent pair
is contained in at least one stable matching. While the problem is polynomial-time solv-
able for Stable Marriage instances without ties (Gusfield, 1987), deciding whether an
agent pair is part of a “weakly stable” matching is NP-hard if ties are allowed (Manlove,
Irving, Iwama, Miyazaki, & Morita, 2002). This directly implies hardness of the Construc-
tive-Exists problem if ties are allowed even when the budget is zero. Similarly, deciding

996

Bribery and Control in Stable Marriage

Action/Goal Constructive-Exists Exact-Exists Exact-Unique

Swap ∀ε > 0: W[1]-hard wrt. ` to approx. P (Th. 5) NP-c. (Pr. 9)
within a factor of O(n1−ε) (Th. 3)

Reorder W[1]-h. wrt. ` (Th. 2) P (Pr. 3) W[2]-h. wrt. ` (Th. 6)
2-approx in P (Pr. 2)

Delete W[1]-h. wrt. ` (Th. 2) P (Ob. 1) P (Th. 7)
Accept.

Delete P (Th. 4) NP-c. (Pr. 6) NP-c. (Pr. 6)
FPT wrt. ` (Pr. 7)

Add W[1]-h. wrt. ` (Th. 1) P (Pr. 5) W[2]-h. wrt. ` (Pr. 8)
NP-c. even if ` =∞ (Th. 1)

Table 1: Overview of our results, where ` denotes the given budget. All stated W[1]- and
W[2]-hardness results also imply NP-hardness. See Section 2 for definitions of parameterized
complexity classes and formal problem definitions.

whether there exists a weakly stable matching not containing a given agent pair is also
NP-hard in the presence of ties (Cseh & Heeger, 2020). Moreover, several authors studied
sufficient or necessary conditions for a Stable Marriage instance to admit a unique stable
matching (Clark, 2006; Consuegra, Kumar, & Narasimhan, 2013; Drgas-Burchardt, 2013;
Eeckhout, 2000; Gelain, Pini, Rossi, Venable, & Walsh, 2011; Reny, 2021).

Our Contributions. Providing a complete polynomial-time solvability vs. NP-hardness
dichotomy, we settle the computational complexity of all problems emanating from our
manipulation scenarios. We also conduct a parameterized complexity analysis of these
problems based on the budget parameter `, that is, the number of elementary manipulative
actions that we are allowed to perform. At some places, we also consider the approx-
imability of our problems in polynomial time or FPT time. For instance, we prove that
Constructive-Exists-Swap does not admit an O(n1−ε)-approximation in f(`)nO(1) time
for any ε > 0 and any computable function f unless FPT=W[1]. Table 1 gives an overview
of our results. Furthermore, for all problems we observe XP-algorithms2 with respect to
the parameter `. The Constructive-Exists-Reorder and Exact-Unique-Reorder
problem require non-trivial algorithms to show this.

We highlight the following five results and techniques.

• We develop a quite general framework for constructing parameterized reductions from
the W[1]-hard graph problem Clique to the Constructive-Exists problem and design
the required gadgets for Add, DeleteAcceptability , and Reorder (Theorems 1 and 2).

• We design a simple and efficient algorithm for Constructive-Exists-Delete (The-
orem 4), based on a non-trivial analysis.

• We design a concise parameterized reduction from the W[2]-hard problem Hitting
Set to Exact-Unique-Reorder. Surprisingly, in the constructed instance, to make

2. That is, polynomial-time algorithms if ` is constant.

997

Boehmer, Bredereck, Heeger, & Niedermeier

the target matching the unique stable matching, the preferences of some agents need
to be reordered by swapping down their (desired) partner in the given matching (The-
orem 6).

• We analyze how the manipulative actions DeleteAcceptability and Reorder can be
used to modify the so-called rotation poset to make a given matching the unique
stable matching (Theorems 7 and 8).

• Our polynomial-time algorithms exhibit surprising connections between manipula-
tions in Stable Marriage and the classical graph problems Bipartite Vertex
Cover (Proposition 3), Minimum Cut (Theorem 5), and Weighted Minimum
Spanning Arborescence (Theorem 7).

Comparing the results for the different combinations of manipulation goals and ma-
nipulative actions, we observe a quite diverse complexity landscape: While for all other
manipulative actions the corresponding problems are computationally hard, Construc-
tive-Exists-Delete and Exact-Unique-DeleteAcceptability are polynomial-time
solvable. Relating the different manipulation goals to each other, we show that specifying
a complete matching that should be made stable instead of just one agent pair that should
be part of some stable matching makes the problem of finding a successful manipulation
significantly easier. In contrast to this, providing even more information about the resulting
instance by requiring that the given matching is the unique stable matching instead of just
one of the stable matchings makes the problem of finding a successful manipulation again
harder.

From a high-level perspective, our computational hardness results can be seen as a
shield against manipulative attacks. Of course, these shields are not unbreakable, as they
only offer a worst-case protection against computing an attack of minimum cost. However,
we slightly strengthen these (worst-case) shields by also proving parameterized hardness
results for the parameter budget, which might be small compared to the number of agents
especially in large matching markets. In contrast to this, our polynomial-time algorithms
suggest that market makers shall be extra cautious in situations where the corresponding
manipulative action can be easily performed.

There also is a more positive interpretation of bribery and control (Faliszewski, Skowron,
& Talmon, 2017; Boehmer, Bredereck, Knop, & Luo, 2020): The minimum cost of a suc-
cessful attack for Constructive-Exists can be interpreted as a measure for the “distance
from stability” of the corresponding pair. Similarly, the minimum cost for Exact-Exists
can be interpreted as the “distance from stability” of the corresponding matching. Both
metrics might be particularly interesting in applications where a central authority decides
on a matching for which stability-related considerations are important but perfect stability
is not vital. For instance, in our introductory example, Professor X might be dissatisfied
with the matchings that are currently stable and therefore could use the “distance from
stability” measure to decide between a few different matchings she deems acceptable. As
Swap can be understood as the most fine-grained of our considered manipulative actions, in
such situations it might be particularly appealing to use our polynomial-time algorithm for
Exact-Exists-Swap to compute the swap distance from stability of a matching. Lastly,
Exact-Unique offers a measure for the “distance from unique stability” of a matching. In

998

Bribery and Control in Stable Marriage

practice, this distance could, for instance, serve as a tie-breaker between different stable
matchings. However, there also exists a destructive view on bribery and control problems,
where the goal is to prevent a given pair/matching from being stable. Destructive bribery
can thus be interpreted as a distance measure from being unstable and can be used to
quantify the robustness of the stability of a pair or a matching (Faliszewski et al., 2017;
Boehmer et al., 2020; Boehmer, Bredereck, Faliszewski, & Niedermeier, 2021). While we
focus on a constructive view, some of our results such as the polynomial-time algorithm for
Constructive-Exists-Delete carry over to the destructive variant (see Section 3.3.2).

Organization of the Paper. Section 2 delivers background on parameterized complexity
analysis and the Stable Marriage problem, and it formally defines the different consid-
ered manipulative actions and manipulation goals. Afterwards, we devote one section to
each of the manipulation goals we analyze. In Section 3, we consider the Constructive-Exists
setting for all manipulative actions. We split this section into two parts; in the first part, we
prove several W[1]-hardness results, and in the second part, we present a polynomial-time
algorithm for the Delete action and a polynomial-time factor-2-approximation algorithm for
the Reorder action. In Section 4, we present our results for Exact-Exists. After considering
the manipulative actions Swap, Reorder, and DeleteAcceptability in the first part of this
section, we analyze the actions Add and Delete in the second part. In Section 5, we start by
presenting hardness results for the Exact-Unique setting and then derive a polynomial-time
for DeleteAcceptability as well as one XP algorithm for Reorder. We conclude in Section 6,
indicating directions for future research and presenting few very preliminary insights from
experimental work with our algorithms.

2. Preliminaries and First Observations

In this section, we start by recapping some fundamentals of parameterized complexity the-
ory (Section 2.1) and defining the Stable Marriage problem and related concepts (Sec-
tion 2.2). Subsequently, we introduce and formally define the five manipulative actions (Sec-
tion 2.3) and three manipulation goals (Section 2.4) we study. Lastly, in Section 2.5, we
make some first observations about the relationship of the different manipulative actions on
a rather intuitive level.

2.1 Parameterized Complexity

A parameterized problem consists of a problem instance I and a (typically integer) parameter
value k (in our case the budget `).3 It is called fixed-parameter tractable with respect to k
if it can be solved by an FPT-algorithm, i.e., an algorithm running in f(k)|I|O(1) time for a
computable function f . Moreover, it lies in XP with respect to k if it can be solved in |I|f(k)

time for some computable function f . There is also a theory of hardness of parameterized
problems that includes the notion of W[t]-hardness with W[t] ⊆ W[t′] for t ≤ t′. If a
problem is W[t]-hard for a given parameter for any t ≥ 1, then it is widely believed not to
be fixed-parameter tractable for this parameter. The usual approach to prove that a given

3. To simplify complexity-theoretic matters, by default parameterized problems are framed as decision
problems. However, our positive algorithmic results easily extend to the corresponding optimization and
search problems.

999

Boehmer, Bredereck, Heeger, & Niedermeier

parameterized problem is W[t]-hard is to describe a parameterized reduction from a known
W[t]-hard problem to it. In our case, we only use the following special case of parameterized
reductions: Standard many-one reductions that run in polynomial time and ensure that the
parameter of the output instance is upper-bounded by a function of the parameter of the
input instance.

2.2 Stable Marriage

An instance I of the Stable Marriage (SM) problem consists of a set U = {m1, . . .mn}
of men and a set W = {w1, . . . , wn} of women, together with a strict preference list Pa for
each a ∈ U ∪W .4 Note that following conventions from the literature and as this simplifies
discussions in some places, we assume that in all considered SM instances I = (U,W,P), it
holds that |U | = |W | = n (for Add, this means that after adding all agents to the instance
the number of women and men is the same).5 Moreover, we call the elements of U ∪W
agents and A = U ∪W denotes the set of agents. The preference list Pa of an agent a is
a strict order over the agents of the opposite gender. We denote the preference list of an
agent a ∈ A by a : a1 � a2 � a3 � . . . , where a1 is a’s most preferred agent, a2 is a’s
second most preferred agent, and so on. For the sake of readability, we sometimes only

specify parts of the agents’ preference relation and end the preferences with “� (rest)
. . . ”. In

this case, it is possible to complete the given profile by adding the remaining agents in an
arbitrary order. We say that a prefers a′ to a′′ if a ranks a′ above a′′ in its preference list,
i.e., a′ �a a′′. For two agents a, a′ ∈ A of opposite gender, let rank(a, a′) denote the rank
of a′ in the preference relation of a, i.e., one plus the number of agents which a prefers to a′.

A matching M is a set of pairs {m,w} with m ∈ U and w ∈W such that each agent is
contained in at most one pair. An agent is assigned in a matching M if some pair of M con-
tains this agent, and unassigned otherwise. For a matching M and an assigned agent a ∈ A,
we denote by M(a) the agent a is matched to in M , i.e., M(a) = a′ if {a, a′} ∈M . We
slightly abuse notation and write a ∈ M for an agent a if there exists some agent a′ such
that {a, a′} ∈ M . A matching is called complete if no agent is unassigned. For a match-
ing M , a pair {m,w} with m ∈ U and w ∈ W is blocking if both m is unassigned or
prefers w to M(m) and w is unassigned or prefers m to M(w). A matching is stable if it
does not admit a blocking pair. We denote the set of stable matchings in an SM instance I
by MI . Given a matching M and some subset A′ ⊆ A of agents, we denote by M |A′ the
restriction of M to A′, i.e., M |A′ = {{u,w} ∈ M : u,w ∈ A′}. A stable matching M is
called man-optimal if for every man m ∈ U and every stable matching M ′ it holds that m
does not prefer M ′(m) to M(m). Symmetrically, a stable matching M is called woman-
optimal if for every woman w ∈W and every stable matching M ′ it holds that w does not

4. We are well aware of the fact that Stable Marriage can be criticized for advocating and transporting
outdated role models or conservative marriage concepts. First, we emphasize that we use the old concepts
(men matching with women) for notational convenience and for being in accordance with the very rich,
also recent literature. Second, we remark that in real-world applications Stable Marriage models
general two-sided matching markets, which may appear in different scenarios such as matching students
with supervisors or matching mines with deposits.

5. Notably, this assumption is crucial for our polynomial-time 2-approximation algorithm for Construc-
tive-Exists-Reorder in Section 3.3.2.

1000

Bribery and Control in Stable Marriage

prefer M ′(w) to M(w). Gale and Shapley (1962) showed that a man-optimal as well as a
woman-optimal matching always exist.

The Stable Marriage with Incomplete Lists (SMI) problem is a generalization
of the Stable Marriage problem where each agent a is allowed to specify incomplete
preferences of agents of the opposite gender. Then, a pair of agents {m,w} with m ∈ U
and w ∈ W can only be part of a stable matching M if they both appear in each others’
preference list. A pair {m,w} with m ∈ U and w ∈ W is blocking if m and w appear
on each other’s preferences and both m is unassigned or prefers w to M(m), and w is
unassigned or prefers m to M(w). Let ma(M) denote the set of agents matched in a stable
matching M . Note that by the Rural Hospitals Theorem (Roth, 1986) it holds for all
stable matchings M,M ′ ∈MI that ma(M) = ma(M ′). Moreover, for an SMI instance I,
let ma(I) denote the set of agents that are matched in a stable matching in I.

2.3 Manipulative Actions

We introduce five different manipulative actions and necessary notation in this subsection.
We denote by X ∈ {Swap,Reorder,DeleteAcceptability,Delete,Add} the type of a manip-
ulative action.

Swap. A Swap operation changes the order of two neighboring agents in the preference list
of an agent.

Example 1. Let a be an agent, and let its preference list be a : a1 � a2 � a3. There are two
possible (single) swaps: Swapping a1 and a2, resulting in a : a2 � a1 � a3, and swapping a2

and a3, resulting in a : a1 � a3 � a2.

Reorder. A Reorder operation of an agent’s preference list reorders its preferences arbi-
trarily, i.e., one performs an arbitrary permutation.

Example 2. For an agent a with preference list a : a1 � a2 � a3, there are six possible
reorderings, resulting in one of the six possible strict total orders over {a1, a2, a3}.

Delete Acceptability. A DeleteAcceptability operation is understood as deleting the
mutual acceptability of a man and a woman. This enforces that such a deleted pair cannot
be part of any stable matching and cannot be a blocking pair for any stable matching. Thus,
after applying a DeleteAcceptability action, the given SM instance is transformed into an
SMI instance. For two agents a, a′ ∈ A, we sometimes also say that we delete the pair or
edge {a, a′} if we delete the mutual acceptability of the two agents a and a′.

Example 3. Let m be a man with preferences m : w1 � w2 � w � w3, and w be a woman
with preferences w : m � m1 � m2 � m3. Deleting the pair {m,w} results in the following
preferences:
m : w1 � w2 � w3 and w : m1 � m2 � m3.

Delete. A Delete operation deletes an agent from the instance. Note that we allow for
deleting an unequal number of men and women.

1001

Boehmer, Bredereck, Heeger, & Niedermeier

w1

w2

w3

m1

m2

m3

1 1

2

2

3

1

2

3

1 3

3

2
3

2

2

1

1 3

(a) Original instance

w1

w2

w3

m2

m3

1

2

2

1

1 3

2

22

1

1 3

(b) Modified instance after deleting m1

Figure 1: Visualization of Example 4 for a Delete operation. The numbers on the edges
encode the preferences of the agents: The number i of an edge closer to an agent a means
that a considers the other endpoint of this edge as its i-th best partner.

Example 4. Let I be an SM instance with agents U = {m1,m2,m3} and W =
{w1, w2, w3}, and the following preferences:

m1 : w1 � w3 � w2, m2 : w3 � w1 � w2, m3 : w1 � w2 � w3,

w1 : m1 � m2 � m3, w2 : m2 � m1 � m3, w3 : m3 � m2 � m1.

The instance I is visualized in Figure 1a. Deleting agent m1 results in the instance I ′ =
(U ′,W ′,P ′) with U ′ = {m2,m3}, W ′ = {w1, w2, w3}, and preferences:

m2 : w3 � w1 � w2, m3 : w1 � w2 � w3,

w1 : m2 � m3, w2 : m2 � m3, w3 : m3 � m2.

The modified instance is visualized in Figure 1b.

Given an SM instance I = (U,W,P) and a subset of agents A′ ⊆ A, we define I \A′ to
be the instance that results from deleting the agents A′ from I.

Add. An Add operation adds an agent from a predefined set of agents to the instance.
Formally, the input for a computational problem considering the manipulative action Add
consists of an SM instance (U,W,P) together with two subsets Uadd ⊆ U and Wadd ⊆ W .
The sets Uadd and Wadd contain agents that are not initially present and can be added to the
original instance. All other men Uorig := U \Uadd and women Worig := W \Wadd are already
initially present and part of the original instance. Adding a set of agents XA = XU ∪XW

with XU ⊆ Uadd and XW ⊆ Wadd results in the instance (Uorig ∪ XU ,Worig ∪ XW ,P ′),
where P ′ is the restriction of P to agents from Uorig ∪ XU ∪ Worig ∪ XW . Note that as
mentioned in Section 2.2, we require that |U | = |W | but do not impose constraints on |Uadd|
and |Wadd| or whether the same number of men and women is added to the instance by the
manipulation.

Example 5. An example for the application of an Add operation is depicted in Figure 2.
The instance consists of three men U = {m1,m2,m3} and three women W = {w1, w2, w3}

1002

Bribery and Control in Stable Marriage

w1

w2

w3

Worig

m1

m2

m3

Uorig

1 1

2

2

3

1

2

3

1 3

3

2
3

2

2

1

1 3

(a) Original instance with only agents w1

and m1 present (to which agents w2, m2,
w3, and m3 can be added).

w1

w2

w3

m1

m2

1 1

2

22

3

1 3

2

2

1

1

(b) Modified instance after adding m2, w2,
and w3.

Figure 2: Example for the application of manipulative action Add.

with Uadd = {m2,m3} and Wadd = {w2, w3}. That is, only the agents m1 and w1 are
initially present in the instance and all other agents can be added by a manipulative action.
After adding XU = {m2} and XW = {w2, w3}, the agent sets change to U∗ = {m1,m2}
and W ∗ = {w1, w2, w3}, resulting in the preference profile shown in Figure 2b.

2.4 Manipulation Goals

In the Constructive-Exists setting, the goal is to modify a given SM instance using manip-
ulative actions of some given type such that a designated man-woman pair is part of some
stable matching. For X ∈ {Swap,DeleteAcceptability,Delete,Add}, the formal definition
of the problem is presented below.

Input: Given an SM instance I = (U,W,P), a man-woman pair {m∗, w∗},
and a budget ` ∈ N.

Question: Is it possible to perform at most ` manipulative actions of type X
such that {m∗, w∗} is part of at least one matching that is stable in
the altered instance?

Constructive-Exists-X

If one applies the above problem formulation to Reorder, then the resulting problem
always allows a trivial solution of size two by reordering the preferences of m∗ and w∗ such
that they are each other’s top-choice. Hence, for Constructive-Exists-Reorder, we
forbid the reordering of the preferences of m∗ and w∗, resulting in the following problem
formulation.

1003

Boehmer, Bredereck, Heeger, & Niedermeier

Input: Given an SM instance I = (U,W,P), a man-woman pair {m∗, w∗},
and a budget ` ∈ N.

Question: Is it possible to perform at most ` reorderings of the preferences of
agents other than m∗ and w∗ such that {m∗, w∗} is part of at least
one stable matching in the altered instance?

Constructive-Exists-Reorder

In the Exact setting, in contrast to the Constructive setting, we are given a complete
matching. Within this setting, we consider two different computational problems. First, we
consider the Exact-Exists problem where the goal is to modify a given SM instance such
that the given matching is stable in the instance. Second, we consider the Exact-Unique
problem where the goal is to modify a given SM instance such that the given matching is
the unique stable matching.

Input: Given an SM instance I = (U,W,P), a complete matching M∗, and
budget ` ∈ N.

Question: Is it possible to perform at most ` manipulative actions of type X such
that M∗ is a (the unique) stable matching in the altered instance?

Exact-Exists (Unique)-X

For manipulative actions Delete and Add, the definitions of Exact-Exists-X and
Exact-Unique-X are not directly applicable, as the set of agents changes by applying
Delete or Add operations. That is why, for these actions, we need to slightly adapt the
definitions from above. The general idea behind the proposed adaption is that we specify a
complete matching on all agents (including those from Uadd ∪Wadd for Add), and require
that the restriction of the specified matching M∗ to the agents contained in the manipulated
instance should be the (unique) stable matching in the manipulated instance. The reasoning
behind this is that we only want to allow pairs that we approve to be part of a (the) stable
matching. This results in the following definition for Exact-Exists (Unique)-Delete:

Input: Given an SM instance I = (U,W,P), a complete matching M∗, and
budget ` ∈ N.

Question: Is it possible to delete at most ` agents from U ∪W such that there
exists some M ′ ⊆ M∗ which is a (the unique) stable matching in the
altered instance?

Exact-Exists (Unique)-Delete

Similarly, we get the following definition for Exact-Exists (Unique)-Add:

1004

Bribery and Control in Stable Marriage

Swap RestrictedSwap

Delete Acceptability ReorderAdd

Delete

Figure 3: Relationship between manipulative actions as described in Section 2.5. An arc
from an action X to an action Y indicates that we present a “simple” description how to
model action X by action Y. Note that an arc does not imply that a computational problem
for X is always reducible to the same problem for Y.

Input: Given an SM instance I = (U,W,P) together with subsets Uadd ⊆ U
and Wadd ⊆W , a complete matching M∗, and budget ` ∈ N.

Question: Is it possible to add at most ` agents XA ⊆ Uadd ∪Wadd such that
there exists some M ′ ⊆ M∗ which is a (the unique) stable matching
in the altered instance?

Exact-Exists (Unique)-Add

There also exist natural optimization variants of all considered decision problems which
ask for the minimum number of manipulative actions that are necessary to alter a given
SM instance to achieve the specified goal. The (in-)approximability results in Theorem 3
and Proposition 2 refer to the optimization variants of these problems.

2.5 Relationship Between Different Manipulative Actions

In this section, to get an overview of the different manipulative actions, we analyze how they
relate to each other. This section, however, does not aim at introducing formal relationships
in the sense of a general notion of reducibility of two manipulative actions X and Y, as
different manipulation goals require different properties of a reduction. Instead, we present
high-level ideas how it is possible to simulate one action with another action. We mainly aim
at giving an intuition for the relationships between the actions that helps to understand,
relate, and classify the results we present in the paper. Note that most of the sketched
relationships are applicable when relating computational problems around the Constructive-
Exists goal for the different manipulative actions to each other (and not so much for Exact-
Exists and Exact-Unique). For an overview of the relations see Figure 3.

Delete via Add. It is possible to model Delete actions by Add actions by adapting the
considered SM instance as follows. We keep all agents a ∈ A from the original instance
and introduce for each of them a new designated binding agent a′ of opposite gender that
ranks a first and all other agents in an arbitrary ordering afterwards. Moreover, we add a′

at the first position of the preferences of a. The set of agents that can be added to the
instance are the binding agents.
Then, adding the binding agent a′ in the modified instance corresponds to deleting the

1005

Boehmer, Bredereck, Heeger, & Niedermeier

corresponding non-binding agent a in the original instance, as in this case the agent and
its binding agent are their mutual top-choices and thereby always matched in a stable
matching.

Restricted Swap via Swap. Before we describe how different manipulative actions can
be modeled by Swap actions, we first sketch how it is possible to model a variant of Swap
where for a given set of pairs consisting of adjacent positions swapping agents on each such
pair of neighboring positions is forbidden and swapping the first and the second element
in the preference relation of an agent may have some specified non-unit cost. To model
this variant, we introduce n(`+ 1) dummy men and n(`+ 1) dummy women each ranking
all dummy agents of the opposite gender before the other agents. Due to the preferences
of the dummy agents, regardless of which ` swaps are performed in the preferences of
dummy agents, in all stable matchings all dummy agents are matched to dummy agents
and a dummy agent is never part of a blocking pair together with a non-dummy agent (see
Lemma 7). Now, for each preference list of a non-dummy agent a, if we want to restrict
that agent a′ at rank i cannot be swapped with agent a′′ ranked directly behind a′ in the
preferences of a, we place the `+ 1 dummy agents with indices (i− 1)(`+ 1) + 1 to i(`+ 1)
of opposite gender between a′ and a′′ in the preference list of a. Thus, the given budget
never suffices to swap agents a′ and a′′ in the preference list of a. Moreover, if we want to
introduce a non-unit cost 2 ≤ c ≤ ` of swapping the first and the second agent in some
agent’s preference list, then we put the dummy agents 1 to c−1 of opposite gender between
its most preferred and second-most preferred agent in its preference list. We use this variant
of Swap (and a more restrictive version of it) in the proofs of Theorem 3 and Proposition 9.

Add via Restricted Swap. It is possible to model Add actions by (restricted) Swap
actions by modifying a given SM instance (A = U∪W,P) with sets Uadd ⊆ U and Wadd ⊆W
as follows. We keep all agents a ∈ A from the original instance and introduce for each
agent a ∈ Uadd ∪Wadd one agent a′ of the opposite gender and one agent a′′ of the same

gender with preferences a′ : a � a′′� (rest)
. . . and a′′ : a′� (rest)

. . . . Moreover, we put for
each a ∈ Uadd ∪Wadd agent a′ as the top-choice of a. All preference lists are completed
by appending the remaining agents in an arbitrary order at the end. Now, we introduce
dummy agents such that the only allowed swaps are swapping a with a′′ in a′’s preference
list for some a ∈ Uadd ∪ Wadd. Not adding an agent a ∈ Uadd ∪ Wadd corresponds to
leaving the preferences of a′ unchanged, which results in {a′, a} being part of every stable
matching. Adding an agent a ∈ Uadd ∪Wadd corresponds to modifying the preferences of a′

by swapping a and a′′, which results in {a′, a′′} being part of every stable matching. In this
case, a is now able to pair up with other agents from the original instance. We prove the
correctness of this transformation in Lemma 6 and use it in the proof of Theorem 3.

Reorder via Restricted Swap. It is possible to model Reorder actions by (restricted)
Swap actions. To do so, we construct a new instance from a given SM instance with agent
set A and a given budget ` as follows. First of all, we keep all agents a ∈ A. Moreover,
for each agent a ∈ A, we add a copy a′ with the same preferences as well as a binding

agent ã of opposite gender with preferences ã : a′ � a� (rest)
. . . . We adjust the budget

to `′ = ` · (4n2 + 2n). For each a ∈ A, we modify the preferences of agents a and a′ by
inserting ã as their top-choice. Moreover, for each agent b of the opposite gender of a in

1006

Bribery and Control in Stable Marriage

m
w′

mt

mb

wt

wb

m′
w

i 2 2 j
3

1

1

2

3

1

1

2
21

12

Figure 4: Gadget to model DeleteAcceptability by Swap. Swapping w and wt in the
preferences of m′ (marked in red) corresponds to deleting edge {m,w}.

the constructed instance, we insert the copy a′ directly after the agent a in the preferences
of b. All preference lists are completed arbitrarily. We now only allow to swap the first two
agents in the preferences of ã at cost 4n2 and to swap all agents except ã in the preferences
of a′ at unit cost. The general idea of the construction is that only one of a and a′ can
be free to pair up with a non-binding agent, as the other is matched to the corresponding
binding agent in all stable matchings. We cannot change the preferences of a at all, while we
can change the preferences of a′ at cost 2n arbitrarily (except its top-choice). Initially, a′ is
always matched to the binding agent but can be “freed” by modifying the preferences of ã at
cost 4n2. Reordering the preferences of an agent a in the original instance then corresponds
to freeing a′ and reordering the preferences of a′ arbitrarily (except its top-choice which is
irrelevant in this case). Overall, we can free at most ` agents a′, while for each of them we
can fully reorder the relevant part of their preferences. We use a similar construction in the
proof of Proposition 9.

DeleteAcceptability via Restricted Swap. It is possible to model deleting the accept-
ability of two agents by performing (restricted) swaps. To do so, we modify the given SM
instance by introducing for each man-woman pair {m,w} with m ∈ U and w ∈W where m
ranks w at position i and w ranks m at position j the gadget depicted in Figure 4 (note
that this gadget was introduced by Cechlárová and Fleiner (2005) to model parallel edges
in a Stable Marriage instance). Moreover, we only allow swapping w and wt in the
preferences of some man m′ (as indicated in Figure 4). Matching m to w in the original
instance corresponds to matching m to w′ and m′ to w in the modified instance. Note
that it is never possible that only one of {m,w′} and {m′, w} is part of a stable matching.
Deleting the acceptability of a pair {m,w} now corresponds to swapping w and wt in m′’s
preference relation, as in this case neither {m,w′} nor {m′, w} can be part of any stable
matching.

Summarizing, we conclude that performing swaps is, in some sense, the most powerful
manipulative action considered, as all other actions can be modeled using it. However, this
does not imply that if one of our computational problems is computationally hard for some
manipulative action, then it is also hard for Swap since, for example, for the Exact-Exists
setting a modified problem definition is used for the manipulative actions Add and Delete.

1007

Boehmer, Bredereck, Heeger, & Niedermeier

3. Constructive-Exists

In this section, we analyze the computational complexity of Constructive-Exists-X . In
Section 3.1, we start with showing intractability for X ∈ {Add, Swap, DeleteAcceptability ,
Reorder}. We complement these intractability results with an XP-algorithm for Construc-
tive-Exists-Reorder (for the other manipulative actions, an XP-algorithm is trivial) in
Section 3.2. Subsequently, in Section 3.3, we show that Constructive-Exists-Delete is
solvable in O(n2) time, and Constructive-Exists-Reorder admits a 2-approximation
with the same running time.

3.1 A Framework for Computational Hardness

All our W[1]-hardness results for Constructive-Exists essentially follow from the same basic
idea for a parameterized reduction. We now explain the general framework of the reduction,
using the manipulative action Add as an example. The modifications needed to transfer the
approach to the manipulative actions Swap, DeleteAcceptability , and Reorder are described
afterwards.

We construct a parameterized reduction from Clique, where given an undirected
graph G = (V,E) and an integer k, the question is whether G admits a size-k clique,
i.e., a set of k vertices that are pairwise adjacent. Parameterized by k, Clique is W[1]-hard
(Downey & Fellows, 2013). Fix an instance (G = (V,E), k) of Clique and denote the set
of vertices by V = {v1, . . . , v|V |} and the set of edges by E = {e1, . . . , e|E|}. Let dv denote
the degree of vertex v. Moreover, let ev1, . . . , e

v
dv

be a list of all edges incident to v.

The high-level idea is as follows. We start by introducing two agents m∗ and w∗, and the
edge {m∗, w∗} is the edge which shall be contained in a stable matching. Furthermore, we

add q :=
(
k
2

)
women w†1, . . . , w

†
q, which we call penalizing women. The idea is that m∗ prefers

every penalizing woman to w∗, and thereby, a stable matching containing the edge {m∗, w∗}
can only exist if every penalizing woman w†j is matched to a man she prefers to m∗, as

otherwise {m∗, w†j} would be a blocking pair for any matching containing {m∗, w∗}. In
addition, we introduce one vertex gadget for every vertex and one edge gadget for every
edge; these differ for the different manipulative actions. Each vertex gadget includes a vertex
woman and each edge gadget an edge man: A penalizing woman can only be matched to
an edge man in a stable matching containing {m∗, w∗}. However, an edge man can only
be matched to a penalizing woman if the gadgets corresponding to the endpoints of the
edge and the gadget corresponding to the edge itself are manipulated. Thus, one has to
perform manipulations in at least

(
k
2

)
edge gadgets and in all vertex gadgets corresponding

to the endpoints of these edges. In this way, a budget of ` = k +
(
k
2

)
suffices if and only if

G contains a clique of size k.

3.1.1 Add

We now give the details of the parameterized reduction (following the general approach
sketched before) for the manipulative action Add. For each vertex v ∈ V , we introduce
a vertex gadget consisting of one vertex woman wv and two men m′v and mv. For each
edge e ∈ E, we introduce an edge gadget consisting of an edge man me, one man m′e, and
one woman we. Additionally, we introduce a set of k women w̃1, . . . , w̃k. The agents that

1008

Bribery and Control in Stable Marriage

can be added are Uadd := {m′v : v ∈ V } ∪ {m′e : e ∈ E} and Wadd := ∅, while all other
agents are part of the original instance. We set the budget ` := k+

(
k
2

)
. (Note that we will

show that the reduction, in fact, works even if ` =∞.)
In this reduction, adding the man m′v for some v ∈ V corresponds to manipulating the

corresponding vertex gadget, whereas adding m′e for some e ∈ E corresponds to manipulat-
ing the corresponding edge gadget. We call the constructed Constructive-Exists-Add
instance Iadd.

For each vertex v ∈ V that is incident to edges ev1, . . . , e
v
dv

, the preferences of the agents
from the corresponding vertex gadget are as follows:

wv : m′v � mev1
� · · · � mevdv

� mv �
(rest)
. . . , m′v : wv �

(rest)
. . . ,

mv : wv � w̃1 � · · · � w̃k � w∗�
(rest)
. . . .

For each edge e = {u, v} ∈ E, the agents from the corresponding edge gadget have the
following preferences:

we : m′e � me�
(rest)
. . . , me : we � wu � wv � w†1 � · · · � w

†
q �

(rest)
. . . ,

m′e : we�
(rest)
. . . .

Lastly, the agents m∗ and w∗ and, for i ∈ [q] (recall that q =
(
k
2

)
) and t ∈ [k], the agents w†i

and w̃t have the following preferences:

w̃t : mv1 � · · · � mv|V | �
(rest)
. . . , w†i : me1 � · · · � me|E| � m

∗� (rest)
. . . ,

m∗ : w†1 � · · · � w
†
q � w∗�

(rest)
. . . , w∗ : mv1 � · · · � mv|V | � m

∗� (rest)
. . . .

Note that in all stable matchings containing {m∗, w∗}, every penalizing woman w†i is
matched to a man she prefers to m∗ and every man mv is matched to a woman which he
prefers to w∗, as otherwise the matching is blocked by {m∗, w†i } or {mv, w

∗}. This ensures
that at most k men m′v can be added to the instance (which will be used later to show that
the reduction also works if ` = ∞), as there exist only k women w̃i that can be matched
to some mv from a manipulated vertex gadget. Parts of the construction are visualized in
Figure 5.

Note that in the instance as described above there are 2|V |+2|E|+1 men and |V |+|E|+
k + q + 1 women. However, our definition of Stable Marriage requires the instance to
have the same number of men and women. This can be achieved by adding |V |+ |E|−k−q
filling women (to Worig). These filling women have arbitrary preferences and every man
prefers any non-filling woman to any filling woman. The presence or absence of filling
women does not change the existence of a stable matching containing {m∗, w∗} because
every stable matching in the presence of filling women can be transformed into a stable
matching in the absence of filling women by deleting all edges incident to a filling woman.
Moreover, every stable matching M in the absence of filling women can be transformed to a
stable matching in the presence of filling women by adding to M a stable matching between
the set of men unassigned by M and filling women (note that such a stable matching has
to exist since every Stable Marriage instance admits a stable matching). In order to

1009

Boehmer, Bredereck, Heeger, & Niedermeier

wu

w†i

m′u

mu me m′e
we

w̃t

m∗

w∗

du + 21
1

1

1 2 1 1j + 1 2

i+ 3

p

t+ 1r

i |E|+ 1

k + 2

r

q + 1|V |+ 1

Figure 5: A vertex gadget and an edge gadget for the hardness reduction for Add, where
e = euj = ep and u = vr. The squared vertices are the vertices from Uadd that can be added

to the instance. In the figure, we only exemplarily depict one penalizing woman w†i for
some i ∈ [q] and one woman w̃t for some t ∈ [k]. For an edge {x, y}, the number on this
edge closer to x indicates the rank of y in x’s preference order.

keep the proof of correctness of the reduction simpler, we will ignore all filling women and
assume they are not part of the instance.

Lemma 1. If G contains a clique of size k, then Iadd is a YES-instance.

Proof. Let C be a clique in G. For an edge e = {u, v} ∈ E, we write e ⊆ C to express that e
lies in C, i.e., u ∈ C and v ∈ C. Further, let C[i] denote the vertex with i-th lowest index
in C and D[i] the edge with i-th lowest index in C. We add the ` agents {m′v : v ∈ C}
and {m′e : e ⊆ C}, and claim that

M :={{m∗, w∗}} ∪ {{m′v, wv} : v ∈ C} ∪ {{mC[i], w̃i} : i ∈ [k]}∪
{{mv, wv} : v ∈ V \ C} ∪ {{me, we} : e 6⊆ C}∪

{{m′e, we} : e ⊆ C} ∪ {{mD[i], w
†
i } : i ∈ [q]}

is a stable matching, containing {m∗, w∗}. We now iterate over all agents present in the
instance after adding {m′v : v ∈ C} and {m′e : e ⊆ C} and argue why they cannot be part
of a blocking pair. Let A′ := Uorig ∪Worig ∪ {m′v : v ∈ C} ∪ {m′e : e ⊆ C} be the agents
contained in the instance arising through the addition of {m′v : v ∈ C} ∪ {m′e : e ⊆ C}.

First, note that for each e 6⊆ C the agents me and we are matched to their top-choice
in the instance and, therefore, cannot be part of a blocking pair.

For each vertex v ∈ V \C, man mv is matched to his first choice and thus is not part of
a blocking pair. Since v ∈ V \ C, every edge e incident to v is not contained in the clique,
and consequently, me is not part of a blocking pair. As all agents in A′ which wv prefers
to mv are not part of a blocking pair, also wv is not part of a blocking pair.

For each vertex v ∈ C, the agents m′v and wv are matched to their top-choice and thus
are not part of a blocking pair. Consider a man mv for some v ∈ C. This man is matched to
woman w̃j for some j ∈ [k]. Edge {mv, wv} is not blocking, as wv is not part of a blocking
pair. Moreover, there cannot exist a blocking pair of the form {mv, w̃i} for some i ∈ [k],
as mv only prefers women w̃i with i < j. However, all women w̃i with i < j prefer their
current partner to mv, as they are all assigned a man corresponding to a vertex with a
smaller index than v.

1010

Bribery and Control in Stable Marriage

Recall that there cannot exist a blocking pair involving an agent from {wv : v ∈ V }.
Thus, since all agents from {me : e ⊆ C} have the same preferences over the penalizing
women, and the penalizing women prefer each man from {me : e ⊆ C} to m∗, there is no

blocking pair involving agents from {me : e ⊆ C} ∪ {w†i : i ∈ [q]}.
Finally, neither m∗ nor w∗ are part of a blocking pair, as all agents which they prefer

to each other (i.e., penalizing women w†i or men mv) are not contained in a blocking pair.
Thus, M is stable. Note that if the k vertices from C were not to form a clique, then the
set {me : e ⊆ C} would consist of less than

(
k
2

)
men. Thus, not all penalizing women

are matched to an edge man in M which implies that m∗ and a penalizing woman form a
blocking pair for M .

We now proceed with the backward direction.

Lemma 2. If there exists a set XA of agents (of arbitrary size) such that after their addition
there exists a stable matching containing {m∗, w∗}, then G contains a clique of size k.

Proof. Let M be a stable matching containing {m∗, w∗}. Since the edges {m∗, w†i } are not
blocking, all penalizing women are matched to an edge man me for some e ∈ E. This
requires that m′e ∈ XA, as otherwise {me, we} is a blocking pair. Moreover, for each such
edge e = {u, v}, the vertex women wu and wv have to be either matched to other edge men
or to the men m′u or m′v. Note that in both cases, the corresponding agents mu and mv

are matched to one of the women w̃i, as otherwise {mu, w
∗} or {mv, w

∗} is a blocking pair.
Thus, there exist at most k vertices v ∈ V where wv is matched to an edge men or to m′v.

Since there are
(
k
2

)
penalizing women, and each of them is matched to an edge man,

it follows that these edge men correspond to the edges in the clique formed by the k
vertices v ∈ V where wv is either matched to an edge men or m′v.

From Lemma 1 and Lemma 2, we conclude that there exists a parameterized reduc-
tion from Clique parameterized by k to Constructive-Exists-Add parameterized by `,
implying the following.

Theorem 1. Parameterized by the budget `, it is W[1]-hard to decide whether
Constructive-Exists-Add has a solution with at most ` additions or has no solution
with an arbitrary number of additions, even if we are only allowed to add agents of one
gender.

3.1.2 DeleteAcceptability and Reorder

The reduction for Add presented in Section 3.1.1 cannot be directly applied for DeleteAc-
ceptability and Reorder. Instead, new vertex and edge gadgets need to be constructed.
One reason for this is that for Add (and Swap), we could ensure that the penalizing women
are not manipulated. However, they can be manipulated by DeleteAcceptability and Re-
order operations, and, therefore, in our construction for Add, there exists an easy solution
with q manipulations (recall that q =

(
k
2

)
), which just deletes the acceptabilities {m∗, w†i }

in the case of DeleteAcceptability or moves m∗ to the end of w†i ’s preferences for each i ∈ [q]
in the case of Reorder. To avoid such solutions, we modify the construction for Add as
follows. We add q additional penalizing men m†1, . . . ,m

†
q, and one manipulation of an edge

1011

Boehmer, Bredereck, Heeger, & Niedermeier

wu

w′u
mu

m′u

me m′′ew′e

we m′e w′′e

m∗

w∗

m†i

w†i

12

1

1

2 1

1 2 1 2
1

1
2121dv + 2

dv + 2

j + 1
2

j + 1
2 q + 1

q + 1

i|E|+ 1

i|E|+ 1

i+ 3

p

i+ 3

p

Figure 6: Visualization of the reduction for DeleteAcceptability and Reorder. For some
edge ep = {u, v} ∈ E, the edge gadget corresponding to ep and the vertex gadget corre-
sponding to u (assuming that ep = euj) are included as well as m∗ and w∗ together with

penalizing agents m†i and w†i for some arbitrary i ∈ [q]. Edges between the vertex and the
edge gadget are dotted.

gadget will now allow to match both a penalizing woman and a penalizing man to this
edge gadget. We assume without loss of generality that k ≥ 6, as this makes the proof of
Lemmas 4 and 5 easier.

We now describe the details of the construction of the SM instance that we want to
manipulate, which is the same for manipulative actions Reorder and DeleteAcceptability .
Given an instance of Clique consisting of a graph G = (V,E) and an integer k, for each
vertex v ∈ V we introduce a gadget consisting of one vertex woman wv and one vertex
man mv together with one woman w′v and one man m′v. The preferences are as follows:

wv : m′v � mev1
� · · · � mevdv

� mv �
(rest)
. . . , w′v : m′v � mv �

(rest)
. . . ,

mv : w′v � wev1 � · · · � wevdv � wv �
(rest)
. . . , m′v : w′v � wv �

(rest)
. . . .

For each edge e = {u, v} ∈ E, we introduce a gadget consisting of one edge man me, one
edge woman we together with two men m′e and m′′e , and two women w′e and w′′e . The
preferences are as follows:

me : w′e � wu � wv � w
†
1 � · · · � w

†
q �

(rest)
. . . , m′e : w′′e � we�

(rest)
. . . ,

we : m′e � mu � mv � m†1 � · · · � m
†
q �

(rest)
. . . , w′e : m′′e � me�

(rest)
. . . ,

m′′e : w′′e � w′e�
(rest)
. . . , w′′e : m′′e � m′e�

(rest)
. . . .

See Figure 6 for an example of a vertex gadget and an edge gadget. The preferences of the
agents m∗, w∗ and the penalizing agents are as follows:

w†i : me1 � · · · � me|E| � m
∗� (rest)

. . . , m∗ : w†1 � · · · � w
†
q � w∗�

(rest)
. . . ,

m†i : we1 � · · · � we|E| � w
∗� (rest)

. . . , w∗ : m†1 � · · · � m
†
q � m∗�

(rest)
. . . .

1012

Bribery and Control in Stable Marriage

Finally, we set ` :=
(
k
2

)
+ k. By Idel we denote the resulting instance of Constructive-

Exists-DeleteAcceptability and by Ireor the resulting instance of Constructive-
Exists-Reorder. In the following, in Lemma 3, we prove the forward direction of the
reduction for both Reorder and DeleteAcceptability . In Lemma 4, we prove the correctness
of the backward direction for Reorder and in Lemma 5 for DeleteAcceptability .

Lemma 3. If G contains a clique of size k, then Idel and Ireor are YES-instances.

Proof. Let C ⊆ V be a clique. We denote by D[i] the edge with i-th lowest index in the
clique and for an edge e = {u, v} ∈ E, we write e ⊆ C if u ∈ C and v ∈ C. In Idel, we delete
the following ` edges. For each v ∈ C, we delete {m′v, w′v}, and for each edge e ⊆ C, we
delete {m′′e , w′′e}. In Ireor, we manipulate the following ` agents. For each v ∈ C, we change

the preferences of m′v to m′v : wv �
(rest)
. . . . For each edge e ⊆ C, we change the preferences

of m′′e to m′′e : w′e�
(rest)
. . . .

We claim that the matching

M :={{m∗, w∗}} ∪ {{mv, w
′
v}, {m′v, wv} : v ∈ C} ∪ {{m′v, w′v}, {mv, wv} : v ∈ V \ C}∪

{{me, w
′
e}, {m′e, we}, {m′′e , w′′e} : e 6⊆ C} ∪ {{m′e, w′′e}, {m′′e , w′e} : e ⊆ C}∪

{{mD[i], w
†
i }, {m

†
i , wD[i]} : i ∈ [q]},

which contains {m∗, w∗}, is stable in both modified instances.
To see this, first note that for each e 6⊆ C, the agents me, m

′′
e , we, and w′′e are matched to

their top-choices, and therefore are not part of a blocking pair. As a consequence, also m′e
and w′e cannot be part of a blocking pair.

For each agent v ∈ V \ C, both m′v and w′v are matched to their top-choices and thus
not part of a blocking pair. The only agents which mv prefers to wv are w′v and we for
every edge e = {v, u} ∈ E incident to v; however, we showed for all these agents that they
are not part of a blocking pair. Thus, mv is not part of a blocking pair. Symmetrically, the
only agents which wv prefers to mv are m′v and me for every edge e = {v, u} ∈ E incident
to v, and also these agents are not contained in a blocking pair. Therefore, also wv is not
part of a blocking pair.

For each agent v ∈ C, the agents mv, m
′
v, and wv are matched to their top-choices and

thus are not part of a blocking pair (note that for both Reorder and DeleteAcceptability , we
have modified the preferences of m′v such that wv is his top-choice). In DeleteAcceptability ,
also woman w′v is matched to her top-choice. In Reorder, woman w′v is matched to her
second choice, while her top-choice m′v is not part of a blocking pair. Thus, w′v is also not
part of a blocking pair.

Since all agents from {me : e ⊆ C} have the same preferences over the penalizing women,
and the penalizing women prefer each man from {me : e ⊆ C} to m∗, there is no blocking

pair involving only agents from {me : e ⊆ C} ∪ {m∗} ∪ {w†i : i ∈ [q]}. Symmetrically, it

follows that no blocking pair involves only agents from {we : e ⊆ C}∪{w∗}∪{m†i : i ∈ [q]}.
Thus, M is stable. Note that if the k vertices from C were not to form a clique, then the
set {me : e ⊆ C} would consist of less than

(
k
2

)
men. Thus, not all penalizing women

are matched to an edge men in M which implies that m∗ and a penalizing women form a
blocking pair for M .

1013

Boehmer, Bredereck, Heeger, & Niedermeier

We now prove the backward direction for Reorder.

Lemma 4. If Ireor is a YES-instance, then G contains a clique of size k.

Proof. Let Xreor be the set of at most ` agents whose preferences have been reordered, and
let M be a stable matching containing {m∗, w∗}. In the following, we call a vertex agent av
unhappy if it is neither contained in Xreor nor matched to one of its dv + 1 most preferred
partners, i.e., it prefers all edge agents of edges incident to v to its current partner. Note that
for each edge gadget for an edge e ∈ E such that no agent from the edge gadget is contained
in Xreor, every stable matching contains the edges {me, w

′
e}, {m′e, we}, and {m′′e , w′′e}. If an

edge agent ae ∈ {me, we} is the only agent from this edge gadget contained in Xreor, then
matching M contains the edge {me, w

′
e} if ae = we and {we,m′e} if ae = me. Furthermore,

each penalizing agent a†i needs to be contained in Xreor or matched to an edge agent ae
since, otherwise, {m†i , w∗} if a†i = m†i or {m∗, w†i } if a†i = w†i blocks M .

Let p be the number of agents from Xreor which are edge agents matched to a penalizing
agent or are penalizing agents. As there are 2

(
k
2

)
penalizing agents, at least 2

(
k
2

)
− p of

them need to be matched to edge agents which are not in Xreor, as otherwise at least one
penalizing agent forms a blocking pair together with m∗ or w∗. Since, as argued above,
matching an edge agent to a penalizing agent requires that at least one agent from the
corresponding edge gadget is part of Xreor (and it is not sufficient to reorder the preferences

of the other edge agent from this gadget), it follows that at least
2(k2)−p

2 + p =
(
k
2

)
+ p

2 ≤ `

agents from Xreor are agents from edge gadgets or penalizing agents. As ` =
(
k
2

)
+ k, it

follows that p ≤ 2k.
For every vertex agent av ∈ {mv, wv} it holds that if none of the vertices from its vertex

gadget is contained in Xreor, then agent av is either matched to an edge agent or unhappy.
As all but at most k− p

2 agents from Xreor are either a penalizing agent or contained in an

edge gadget, at least 2
(
k
2

)
− p edge agents are matched to penalizing agents. Because an

edge agent may only be matched to an agent outside its edge gadget if the preferences of
at least one agent from the gadget are modified, it follows that there can be at most 2k− p
happy vertex agents. Thus, without loss of generality, there are at most k− p

2 happy vertex
men (otherwise we apply the following argument for happy vertex women).

Note that at least
(
k
2

)
− p penalizing men are matched to edge women which are not

contained in Xreor in M . These
(
k
2

)
−p edge women we for some e ∈ E prefer the vertex men

corresponding to the endpoints of e to each penalizing man. Since only the at most k − p
2

happy vertex men may not prefer to be matched to an edge women corresponding to an
incident edge, it follows that the

(
k
2

)
−p edges to which the

(
k
2

)
−p edge women we correspond

have at most k − p
2 endpoints. This is only possible if

(
k
2

)
− p ≤

(k− p
2

2

)
, which is equivalent

to 0 ≤ p · (p− 4k + 10), implying (as p ≥ 0) that p = 0 or p ≥ 4k − 10. However, the latter
case combined with our previous observation that p ≤ 2k implies that 2k ≥ p ≥ 4k − 10, a
contradiction for k ≥ 6. It follows that p = 0. This implies that indeed k vertex men are
happy, no penalizing woman has been manipulated, and that in

(
k
2

)
edge gadgets exactly one

agent, but no edge agent has been manipulated. Thus, each penalizing woman is matched to
an edge man me such that both endpoints of e are happy. It follows that there are

(
k
2

)
edges

whose endpoints are among the k vertices whose vertex man mv is happy. These k vertices
clearly form a clique.

1014

Bribery and Control in Stable Marriage

In a similar way, we can show the analogous statement for Idel.

Lemma 5. If Idel is a YES-instance, then G contains a clique of size k.

Proof. Let Xdel be the set of at most ` pairs which have been deleted, and let M be
a stable matching containing {m∗, w∗}. Note that, for each edge gadget for an edge e
such that no pair from the edge gadget is contained in Xdel, any stable matching contains
the edges {me, w

′
e}, {m′e, we}, and {m′′e , w′′e}. For each penalizing agent a†i , either the

edge {a†i , a∗} where a∗ is the agent from {m∗, w∗} of opposite gender is contained in Xdel

or a†i is matched to an edge agent ae. Let p be the number of pairs in Xdel containing

a penalizing agent and an agent from {m∗, w∗}. As there are 2
(
k
2

)
penalizing agents, at

least
2(k2)−p

2 +p =
(
k
2

)
+ p

2 ≤ ` =
(
k
2

)
+k deletions happen where either both involved agents

are from the same edge gadget or one of the involved agents is a penalizing agent and the
other one is from {m∗, w∗}. From this, it follows that p ≤ 2k.

For every vertex agent av it holds that if no pair in the corresponding vertex gadget is
contained in Xdel, then the agent av is either matched to an edge agent or unhappy (where
av is unhappy if none of the edges incident to it is deleted and it is not matched to one
of its first dv + 1 most preferred partners). Since, as argued above, all but k − p

2 of the

deleted pairs do not involve a vertex agent, and at least 2
(
k
2

)
− p edge agents are matched

to penalizing agents, there can be at most 2k − p happy vertex agents. The rest of the
argument is the same as in the proof of Lemma 4.

The following theorem follows directly from Lemmas 3 to 5.

Theorem 2. Parameterized by the budget `, Constructive-Exists-
DeleteAcceptability is W[1]-hard. Parameterized by `, Constructive-Exists-
Reorder is W[1]-hard, and this also holds if one is only allowed to reorder the preferences
of agents of one gender.

Note that the presented construction, in contrast to the reduction for Add and Swap,
does not have implications in terms of inapproximability of Reorder and DeleteAcceptabil-
ity . In particular, as described in the beginning of this section, there always exists a trivial
solution of cost 2q. In fact, we show in the next section that Reorder admits a factor-2
approximation. Note further that the presented construction is also a valid parameterized
reduction from Clique to Constructive-Exists-Swap; however, we will derive a stronger
hardness result for this problem (yielding also FPT-inapproximability) in Section 3.1.3.

3.1.3 Swap

Theorem 1 showed that it is W[1]-hard to distinguish whether it is possible to make
an edge e∗ = {m∗, w∗} part of a stable matching or no set of agents whose addition
makes e∗ part of a stable matching exists. We now use this W[1]-hardness to derive an
FPT-inapproximability result for Constructive-Exists-Swap by a reduction from Con-
structive-Exists-Add. We achieve this result in two steps. First, we consider a variant
of Swap, which we call SwapRestricted: Here, a subset Â of agents is given, and one is
only allowed to swap the first two agents in the preference lists of agents from Â, while the

1015

Boehmer, Bredereck, Heeger, & Niedermeier

preferences of all agents A \ Â need to remain unmodified. By reducing from Construc-
tive-Exists-Add, we show that parameterized by the budget `, it is W[1]-hard to decide
whether Constructive-Exists-SwapRestricted has a solution with at most ` swaps
or has no solution with an arbitrary number of allowed swaps. Second, we derive our
FPT-inapproximability result for Constructive-Exists-Swap by reducing from Con-
structive-Exists-SwapRestricted.

We start by showing W[1]-hardness of Constructive-Exists-SwapRestricted.

Lemma 6. Parameterized by the budget `, it is W[1]-hard to decide whether
Constructive-Exists-SwapRestricted has a solution with at most ` swaps or has no
solution with an arbitrary number of allowed swaps.

Proof. We reduce from Constructive-Exists-Add, for which it is W[1]-hard to distin-
guish whether there is a solution with at most ` additions or no solution for any number
of additions (Theorem 1). Let (I, Uadd,Wadd, `) be an instance of Constructive-Exists-
Add. We form an equivalent instance of Constructive-Exists-SwapRestricted by
adding for each man m ∈ Uadd a woman wm and a man m′, where wm is added to m’s pref-
erences as the top-choice. The man m′ has wm as his top-choice and the woman wm has m
as her top-choice and m′ as her second most preferred man. All other agents follow in an
arbitrary order in the preferences of wm and m′. All other agents add wm or m′ at the end of
their preferences. Similarly, we add for each woman w ∈Wadd two agents mw and w′ whose
preferences are constructed analogously. We set Â := {mw : w ∈Wadd}∪{wm : m ∈ Uadd}.

It remains to show that the instances are equivalent. From a solution to Construc-
tive-Exists-Add, consisting of the agents XU ∪XW , one can get a solution to Construc-
tive-Exists-SwapRestricted by swapping the two most preferred men m and m′ in the
preferences of wm for each m ∈ XU and modifying the preferences of mw for each w ∈ XW

analogously. Vice versa, from a solution to Constructive-Exists-SwapRestricted
modifying the preferences of a set of agents X one can get a solution to Constructive-
Exists-Add by adding w ∈ Wadd if mw ∈ XU and m ∈ Uadd if wm ∈ XW . It is now
straightforward to verify the correctness.

We continue by reducing SwapRestricted to Swap. The basic idea behind this reduction
is that we can introduce a set of dummy agents and use these agents to make the swaps not
allowed in the SwapRestricted instance too expensive. First, we show that we can add a
set of r > ` men md

1, . . . , md
r and r women wd1 , . . . , wdr to an SM instance such that, in any

instance arising through at most ` swaps, any stable matching contains the edges {md
i , w

d
i }

for all i ∈ [r] regardless where the newly inserted agents are placed in the preferences of
the other agents. This allows us to make swapping two neighboring non-dummy agents a
and a′ in the preference list of some non-dummy agent b very expensive, as we can insert
(some of) the newly added dummy agents in between a and a′ in b’s preference list.

Given an SM instance I and a list of swap operations S, we denote by I[S] the SM
instance resulting from applying the swaps from S to I.

Lemma 7. Let I be a Stable Marriage instance containing r men md
1, . . . ,m

d
r

and r women wd1 , . . . , w
d
r such that, for all i ∈ [r], the preferences of wdi and md

i match

1016

Bribery and Control in Stable Marriage

the following pattern (where all indices are taken modulo r):

md
i : wdi � wdi+1 � wdi+2 � · · · � wdr+i−1�

(rest)
. . . ,

wdi : md
i � md

i+1 � md
i+2 � · · · � md

r+i−1�
(rest)
. . . .

For any list S of at most r − 1 swap operations, any stable matching in the instance I[S]
contains the edges {md

i , w
d
i } for all i ∈ [r].

Proof. Let S be any list of at most r − 1 swap operations. For the sake of con-
tradiction, assume that there exists an i1 ∈ [r] and a stable matching M ∈ MI[S]

such that {md
i1
, wdi1} /∈ M . This implies that there either exist s indices i1, . . . is such

that {md
i1
, wdis} and {md

ij+1
, wdij} ∈ M for j ∈ [s − 1] or there exist some w /∈ {wd1 , . . . , wdr}

and m /∈ {md
1, . . . ,m

d
r} together with s indices i1, . . . is such that {md

i1
, w} ∈ M

and {m,wdis} ∈M and {md
ij+1

, wdij} ∈M for j ∈ [s− 1].

In the first case, for every j ∈ [s], at least one of wdij and md
ij

needs to prefer his or

her partner in M to md
ij

and wdij , since {mij , wij} does not block M . Thus, we assume

without loss of generality that wdi1 prefers md
i2

to md
i1

. Furthermore, there exists no ij such

that both wdij and md
ij+1

prefer their partners in M to md
ij

and wdij+1
, respectively, as this

would already require r swaps. It follows that wdij prefers md
ij+1

to md
ij

for every j ∈ [s]

(where is+1 := is). Define dist(p, p′) := p′ − p mod r. To make wdij prefer md
ij+1

to md
ij

, one

needs to perform at least dist(ij , ij+1) swaps in the preference list of wdij (where is+1 = i1).
Summing over the number of swaps for wi1 , . . . , wis , we get that at least r swaps have been
performed, a contradiction.

In the second case, we may assume without loss of generality by the same argument
as in the first case that all women wdij prefer md

ij+1
to md

ij
, but md

ij+1
does not prefer wdij

to wdij+1 for j ∈ [s−1]. However, as otherwise {wdis ,m
d
is
} forms a blocking pair, this implies

that wdis prefers m to md
is

, which needs at least r swaps, a contradiction.

We now use Lemma 7 to model SwapRestricted by Swap by adding sufficiently many
agents with preferences as in Lemma 7 such that any swap not allowed in the SwapRestricted
instance drastically exceeds the budget in the Swap instance:

Lemma 8. Let (I = (U,W,P), Â) be a SwapRestricted instance with n men and n women,
and 4 ≤ c ∈ N. One can create a Stable Marriage instance I ′ by adding 2nc(n − 1)
dummy agents md

1, . . . ,m
d
nc(n−1), w

d
1 , . . . , w

d
nc(n−1) such that

(a) all swaps which are allowed in I are also possible in I ′ (i.e., for every agent a which
is allowed to swap agents b and b′ in I, there is no agent between b and b′ in the
preferences of agent a in I ′),

(b) for any list S of allowed swap operations in I, it holds thatMI′[S] = {M∪{{md
i , w

d
i } :

i ∈ [nc(n− 1)]} : M ∈MI[S]}, and

(c) for any list S′ of at most nc swap operations in the instance I ′, it holds that MI[S] =
{M |U∪W : M ∈ I[S′]}, where S is the sublist of S′ containing the swaps in S′ between

1017

Boehmer, Bredereck, Heeger, & Niedermeier

the two most preferred agents of some agent a ∈ Â in I. Furthermore, any M ∈ I[S′]
contains the edge {md

i , w
d
i } for i ∈ [nc(n− 1)].

Proof. Let (I = (U,W,P), Â) be an instance of SwapRestricted. We modify the
given SM instance I to obtain a new SM instance I ′ by adding nc(n − 1) additional
men md

1, . . . ,m
d
nc(n−1) and nc(n − 1) additional women wd1 , . . . , w

d
nc(n−1). For the rest of

the proof, all indices are taken modulo nc(n− 1). The preferences of these men and women
are as follows:

md
i : wdi � wdi+1 � wdi+2 � · · · � wdnc(n−1)+i−1�

(rest)
. . . ,

wdi : md
i � md

i+1 � md
i+2 � · · · � md

nc(n−1)+i−1�
(rest)
. . . .

For a man m ∈ U \ Â with m : w1 � w2 � · · · � wn and a woman w ∈ W \ Â
with w : m1 � m2 � · · · � mn, their modified preferences look as follows:

m : w1 � wd1 � wd2 � · · · � wdnc � w2 � wdnc+1 � wdnc+2 � · · · � wd2nc � w3 � · · · � wn,

w : m1 � md
1 � md

2 � · · · � md
nc � m2 � md

nc+1 � md
nc+2 � · · · � md

2nc � m3 � · · · � mn.

For a man m ∈ U ∩ Â with m : w1 � w2 � · · · � wn (and analogously for a woman w ∈
W ∩ Â), his modified preferences look as follows:

m : w1 � w2 � wdnc+1 � wdnc+2 � · · · � wd2nc � w3 � w2nc+1 � · · · � w3nc

� w4 � · · · � wn � wd1 � wd2 � · · · � wdnc .

We now prove that the constructed SM instance I ′ indeed fulfills the three conditions
from the lemma. Part (a) is obvious. Part (b) is also clearly fulfilled, as md

i and wdi are their
mutual top choices in I ′[S] for i ∈ [nc(n − 1)] and therefore are matched together by any
stable matching in I ′[S] and can never form a blocking pair with another agent (dummy
agents can never be part of a swap from S, as they are not part of the instance I).

To prove part (c), let S′ be any set of at most nc swap operations in I ′. By Lemma 7,
any stable matching in I ′[S′] contains the edges {md

i , w
d
i } for i ∈ [r]. As any change which

does not involve at least one agent md
i or wdi swaps the two most preferred agents of some

agent a ∈ Â, the lemma follows.

Combining the hardness result from Lemma 6 and the construction from Lemma 8
modeling SwapRestricted by Swap, we now prove the following inapproximability result.
Note that the inapproximability is tight in the sense that there is always a solution using
at most 2(n− 1) swaps which, given the edge {m∗, w∗} that shall be contained in a stable
matching, just swaps m∗ to be the most preferred man of w∗ and swaps w∗ to be the most
preferred woman of m∗.

Theorem 3. Unless FPT = W[1], Constructive-Exists-Swap does not admit
an O(n1−ε)-approximation in f(`)nO(1) time for any ε > 0 and any computable function f .
This also holds if one is only allowed to swap the first two men in the preferences of women.

1018

Bribery and Control in Stable Marriage

Proof. Fix ε > 0. We assume without loss of generality that ε = 4c−1 for some c ∈ N (if
this is not the case, then we can choose a smaller ε fulfilling this condition).

We reduce from Constructive-Exists-SwapRestricted, for which it is W[1]-hard
to distinguish whether there is a solution with at most ` manipulations or no solution
for any number of allowed swaps (Lemma 6). Let (I, Â, `) be an instance of Con-
structive-Exists-SwapRestricted with at most nR men and at most nR women. By
Lemma 8, we can construct an instance of Constructive-Exists-Swap which contains
a solution of size at most ` if and only if the corresponding instance of Construc-
tive-Exists-SwapRestricted contains a solution of size at most ` ≤ n3

R, and other-
wise any solution has size at least ncR. Let n = ncR(ncR − 1) + ncR = Θ(nc+1

R) be the
number of men in the Constructive-Exists-Swap instance. Thus, given an instance
of Constructive-Exists-SwapRestricted, an O(n1−ε)-approximation for Construc-
tive-Exists-Swap allows to decide whether there exists a solution of size O(`n1−ε) ≤
O(n

(c+1)(1−ε)+3
R) = O(n

(4
ε
+1)(1−ε)+3

R) = O(n
4
ε
−4+1−ε+3

R) = O(n
4
ε
−ε

R) = O(nc−εR) < ncR in the
given instance (the last inequality holds only for sufficiently large nR). Therefore, assum-
ing that we have an O(n1−ε)-approximation algorithm for Constructive-Exists-Swap
running in f(`)nO(1) time for some computable function f allows to decide Construc-

tive-Exists-SwapRestricted in f(`)n
O(1)
R time, which implies by Lemma 6 that FPT =

W[1].

3.2 An XP Algorithm for Constructive-Exists-Reorder

Observe that for all manipulative actions except Reorder, the membership of Construc-
tive-Exists-X parameterized by ` in XP follows from a straightforward brute-force algo-
rithm. We now show that Constructive-Exists-Reorder also lies in XP parameterized
by the budget ` using a simple algorithm.

Proposition 1. Constructive-Exists-Reorder can be solved in O(2`n2`+2) time.

Proof. We guess the set X of ` agents whose preferences are modified, and for each
agent a ∈ X, we guess an agent T (a) to which a is matched in a stable matching con-
taining {m∗, w∗}. For each a ∈ X, we modify the preferences of a such that T (a) is its
top-choice. We check whether the resulting instance contains a stable matching containing
the edge {m∗, w∗}. If any guess results in a stable matching containing {m∗, w∗}, then we
return YES, and NO otherwise.

The running time of the algorithm is O(2`n2`+2), as we guess a set of ` out of 2n agents
whose preference are modified, and for each of these ` agents we guess to which agent it is
matched to. Checking whether there is a stable matching containing {m∗, w∗} can be done
in O(n2) time for each guess (Gusfield, 1987).

It remains to show the correctness. If the algorithm returns YES, then the instance
is clearly a YES-instance. To prove the other direction, assume that there exists a set Y
of at most ` agents such that in an instance IY arising through reordering the preferences
of Y there exists a stable matching M containing the edge {m∗, w∗}. Then, there exists
a guess (X,T) for our algorithm such that Y ⊆ X and T (a) = M(a) for all a ∈ X. We
claim that for the instance constructed by the algorithm using this guess, the matching
M is stable, and therefore the algorithm returns YES. Note that no agent from X can be

1019

Boehmer, Bredereck, Heeger, & Niedermeier

contained in a blocking pair, as they are all matched to their top-choice. However, any
blocking pair containing no agent from X would also be a blocking pair for M in IY , and
therefore, no blocking pair exists.

3.3 Polynomial-Time Algorithms

Having encountered computational hardness for all manipulative actions but Delete, we now
give a polynomial-time algorithm for Constructive-Exists-Delete. We then use this
algorithm to derive a 2-approximation algorithm for Constructive-Exists-Reorder.
The polynomial-time algorithm for Delete might be particularly surprising because of the
strong hardness result that we derived for the related manipulative action Add. However,
the reason for this is that, in a Constructive-Exists-X instance, we can compute a set of
“conflicting agents” that prevent that the pair {m∗, w∗} is part of a stable matching, and one
Delete operation can only decrease the number of conflicting agents by at most one (and, in
fact, by deleting a conflicting agent, we can also always decrease the number of conflicting
agents by one). For Add, however, there are presumably multiple ways or no way how one
could resolve a conflicting agent. Similarly, we derived an inapproximability result for Swap,
while the seemingly similar manipulative action Reorder admits a factor-2 approximation
in the Constructive-Exists setting. The reason for this is that the Reorder operation is
more powerful, allowing to create in some sense trivial solutions again by identifying a set
of “conflicting agents”. These trivial solutions then consist of reordering the preferences of
all conflicting agents and we prove that this is a 2-approximation. Thus, compared to the
Swap setting where one can save quite some manipulative actions by choosing the swaps
to perform, here it does not make a fundamental difference how the agent’s preferences
are reordered. We start by presenting the polynomial-time algorithm for Delete, and then
describe the factor-2 approximation algorithm for Reorder.

3.3.1 Delete

In sharp contrast to the hardness results for all other considered manipulative actions, there
is a simple algorithm solving a given instance of Constructive-Exists-Delete consisting
of an SM instance I = (U,W,P) together with a man-woman pair {m∗, w∗} and an integer `
in time linear in the size of the input. The algorithm is based on the following observation.
Let W ∗ be the set of women preferred by m∗ to w∗, and U∗ the set of men preferred by
w∗ to m∗. In every stable matching M which includes {m∗, w∗}, every woman in W ∗ needs
to be matched to a man whom she prefers to m∗, or she needs to be deleted. Analogously,
every man in U∗ needs to be matched to a woman which he prefers to w∗, or he needs to be
deleted. Consequently, all pairs consisting of an agent a ∈ U∗∪W ∗ and an agent a′ which a
does not prefer to w∗ or m∗ cannot be part of any stable matching. After deleting these
pairs and the agents m∗ and w∗, consider a stable matching M in the resulting instance. If
we add the pair {m∗, w∗} to M , then in the original instance I each woman w ∈ W ∗ not
assigned by M will always create a blocking pair {m∗, w} (independent of how and whether
we extend M). Similarly, each unassigned man m ∈ U∗ will always create a blocking pair
{m,w∗}. Thus, the agents from U∗ ∪ W ∗ that are unassigned in M will be the set of
“conflicting agents”. This observation motivates the following algorithm:

1020

Bribery and Control in Stable Marriage

1. Let U∗ be the set of agents which w∗ prefers to m∗.
Let W ∗ be the set of agents which m∗ prefers to w∗.

2. Delete all edges {m,w} such that m ∈ U∗ and m does not prefer w to w∗.
Delete all edges {m,w} such that w ∈W ∗ and w does not prefer m to m∗.
Delete the agents m∗ and w∗.
Call the resulting SMI instance Î.

3. Compute a stable matching M̂ in Î.

4. Return the set A′ of agents from U∗ ∪W ∗ which are unassigned in M̂ as the agents
to be deleted.

To show the correctness of this algorithm, we first investigate the influence of a Delete
operation on the set of agents matched in a stable matching.

Lemma 9. Let I ′ be an SMI instance and a ∈ A some agent. Then, there exists at most
one agent a′ ∈ A which was unassigned in I ′, i.e., a′ /∈ ma(I ′), and is matched in I ′ \ {a},
i.e., a′ ∈ ma(I ′ \ {a}).

Proof. Let M ′ be a stable matching in I ′ and Ma be a stable matching in I ′\{a}. We prove
that |ma(Ma) \ma(M ′)| ≤ 1, which clearly implies the lemma. To do so, we examine the
symmetric difference S of the two matchings M ′ and Ma. The set S is a union of paths and
even-length cycles. We do not care about cycles, as all agents in such a cycle are matched
in both M ′ and Ma. Therefore, we turn to paths.

First, of all, we claim that all paths include a. Assume that there exists a path P =
(a1, . . . , ak+1) for some k ∈ N not including a, starting without loss of generality with a
pair from M ′. Then, as {a1, a2} is not a blocking pair in Ma and a1 is unassigned in M ′,
it holds that a3 �a2 a1. As {a2, a3} is not a blocking pair in M ′, it holds that a4 �a3 a2.
Consequently, it holds that ak+1 �ak ak−1. If k is even, then ak+1 is unassigned in M ′, and
thus {ak, ak+1} is a blocking pair in M ′, contradicting the stability of M ′. Otherwise, ak+1

is unassigned in Ma, and {ak, ak+1} is blocking in Ma.

From this it follows that there exists at most one maximal path P , which needs to
involve agent a. As agent a cannot be part of Ma, it needs to be one of the endpoints of P .
Consequently, the only agent that could be matched in Ma but not matched in M ′ is the
other endpoint of P .

Using Lemma 9, we now show the correctness of the algorithm.

Theorem 4. Constructive-Exists-Delete is solvable in O(n2) time.

Proof. Since a stable matching in an SMI instance can be computed in O(n2) time (Gale
& Shapley, 1962), the set A′ clearly can be computed in O(n2). We claim that the given
Constructive-Exists-Delete instance is a YES-instance if and only if |A′| ≤ `.

First assume |A′| ≤ `. Let M̂ be the stable matching in Î computed by the algorithm.
We define M := M̂ ∪{{m∗, w∗}}, and claim that M is a stable matching in I \A′, showing
that the given Constructive-Exists-Delete instance is a YES-instance. For the sake of
a contradiction, assume that there exists a blocking pair {m,w}. Note that {m,w} contains

1021

Boehmer, Bredereck, Heeger, & Niedermeier

neither m∗ nor w∗ since all agents which m∗ and w∗ prefer to each other are either deleted
or matched to an agent they prefer to m∗ and w∗. Since {m,w} is not a blocking pair in
Î \A′, it contains an agent a from (U∗∪W ∗)\A′, and a prefers w∗ to w if a = m or a prefers
m∗ to m if a = w. We assume without loss of generality that a = m. As m is matched
in M̂ , he prefers M̂(m) = M(m) to w∗. Thus, m prefers M(m) to w, a contradiction to
{m,w} being blocking for M .

Now assume that |A′| > `. For the sake of contradiction, assume that there exists
a set of agents B′ = {b1, . . . , bk} with k ≤ ` such that I \ B′ admits a stable match-
ing M containing {m∗, w∗}. For each i ∈ {0, 1, . . . , k}, let M̂i be a stable matching
in Î \ {b1, . . . , bi}. By the definition of A′, all agents from A′ are unassigned in M̂0. Note
that each agent a ∈ A′ ⊆ U∗∪W ∗ is either part of B′ or prefers M(a) to m∗ or w∗ due to the
stability of M ; in particular, a is either contained in B′ or matched in M . Since k ≤ ` < |A′|,
there exists an i such that there exist two agents a, a′ ∈ A′ which are unassigned in M̂i−1

and not contained in {b1, . . . , bi−1} but matched in M̂i or contained in {b1, . . . bi}. It fol-
lows from Lemma 9 that it is not possible that both a and a′ are unassigned in M̂i−1

but matched in M̂i. Consequently, without loss of generality it needs to hold that a = bi
with a being unassigned in M̂i−1, and a′ ∈ ma(Î \ {b1, . . . bi}) \ma(Î \ {b1, . . . bi−1}). How-
ever, deleting an agent that was previously unassigned does not change the set of matched
agents, i.e., ma(Î \ {b1, . . . bi−1}) = ma(Î \ {b1, . . . bi}), since a matching that is stable
in Î \{b1, . . . bi−1} is also stable in ma(Î \{b1, . . . bi}) (deleting unassigned agents cannot cre-
ate new blocking pairs). This contradicts a′ ∈ ma(Î \{b1, . . . bi})\ma(Î \{b1, . . . bi−1}).

The algorithm of Theorem 4 directly extends to the setting where an arbitrary number
of edges is given and the goal is to delete agents such that there exists a stable matching
which is a superset of the given set of edges.

3.3.2 Factor-2 Approximation for Reorder

We now follow a similar approach as for Constructive-Exists-Delete to construct a
factor-2 approximation for the optimization version of Constructive-Exists-Reorder
(notably, this algorithms crucially relies on our assumption that |U | = |W |). We construct
an instance Î identically as in the case of Constructive-Exists-Delete: Let W ∗ be the
set of women preferred by m∗ to w∗, and U∗ be the set of men preferred by w∗ to m∗. In
every stable matching M which contains {m∗, w∗}, every woman which m∗ prefers to w∗

needs to be matched to a man which she prefers to m∗, or her preference list needs to
be reordered. Analogously, every man which w∗ prefers to m∗ needs to be matched to a
woman which he prefers to w∗ or his preferences need to be reordered. Consequently, all
pairs consisting of an agent a ∈ U∗ ∪W ∗ and an agent a′ which a does not prefer to w∗

or m∗ cannot be part of any stable matching. This observation motivates a transformation
of the given SM instance I to a SMI instance Î through the deletion of all such pairs. We
also delete w∗ and m∗ from Î and compute a stable matching M in the resulting instance.

We observe analogously to Lemma 9 that by reordering the preferences of an agent, at
most two previously unassigned agents become matched in an SMI instance:

Lemma 10. Let I ′ be an SMI instance, a∗ ∈ A some agent, and let Ia∗ denote the instance
arising from I ′ by reordering and extending a∗’s preferences arbitrarily. Then, there exists

1022

Bribery and Control in Stable Marriage

at most one man m ∈ U and at most one woman w ∈ W who are unassigned in I ′,
i.e., m,w /∈ ma(I ′), and who are matched in Ia∗, i.e., m,w ∈ ma(Ia∗).

Proof. The proof proceeds analogously to the proof of Lemma 9. Let M ′ be some stable
matching in I ′ and Ma∗ a stable matching in Ia∗ . We examine again the symmetric
difference of M ′ and Ma∗ and conclude that only the unique maximal path including a∗

can change the set of matched agents. As this path has only two endpoints, at most two
agents which are not matched in M ′ can become matched in Ma∗ . Assuming that the path
has an even number of edges, only one of the endpoints can be matched in Ma∗ . Assuming
that the path has an odd number of edges, one of the endpoints needs to correspond to a
woman and one to a man.

Now, similarly to Theorem 4, it is possible to construct a straightforward solution, which
matches one agent from U∗ ∪W ∗ which is currently not matched in any stable matching
in Î by reordering the preferences of one agent. Using Lemma 10, we now show that this
approach yields a factor-2 approximation of the optimal solution:

Proposition 2. One can compute a factor-2 approximation of the optimization version of
Constructive-Exists-Reorder in O(n2) time.

Proof. Given an instance of Constructive-Exists-Reorder consisting of an SM in-
stance I = (U,W,P), budget `, and the pair {m∗, w∗}, we construct an SMI instance Î
and define U∗ and W ∗ as described above. The 2-approximation algorithm proceeds as
follows (recall that ma(M) is the set of agents assigned by matching M):

• Compute a stable matching M̂ in Î.

• Let A∗ := (U∗ ∪W ∗) \ma(M̂) and A′ := A \ma(M̂). Reorder the preferences of each
agent from A∗ such that all agents from A′ of opposite gender are in the beginning of
the preferences.

Let N be a stable matching on the instance restricted to agents from A′ (with modified
preferences). Note that the number of men which M̂ leaves unassigned equals the number
of women which M̂ leaves unassigned (here we use that |U | = |W |), and thus, N matches
every agent from A′. The correctness of the solution returned by the algorithm and the
approximation factor can be proven in a way similar to the proof of Theorem 4:

First, we show that M ′ := M̂ ∪N ∪{{m∗, w∗}} is a stable matching after the described
reorderings of the preferences. No agent from A∗ is part of a blocking pair, as N is stable and
every agent from A∗ prefers every agent from A′ of opposite sex to every agent from A \A′.
No agent from A′ \ A∗ is part of a blocking pair, as N is stable and no agent from A \ A′
prefers an agent from A′ to its partner in M̂ . By the same arguments as in Theorem 4, no
agent from A \A′ is part of a blocking pair.

It remains to show that at least q := |A∗|
2 reorderings are needed. Assume that less

than q reorderings are needed, and let B = {b1, . . . , bk} with k < q be the set of agents
whose preferences have been reordered; we refer to the SM instance arising through these
reorderings as I∗. Let M∗ be a stable matching containing {m∗, w∗} in the instance I∗.
Let M̂i be a stable matching in the instance Îi arising from Î by replacing the preference
list of b1, . . . , bi by their reordered, complete preferences (this includes adding for each

1023

Boehmer, Bredereck, Heeger, & Niedermeier

agent a ∈ A\{b1, . . . , bi} such that {a, bj} is not contained in Î the agent bj in a’s preferences
at its position in a’s preferences in I). Note that M∗ is a stable matching in Îk (if M∗

contained an edge {m,w} not contained in Îk, then m ∈ U∗ and m would prefer w∗

to M∗(m), implying that {m,w∗} is a blocking pair, or w ∈ W ∗ and w would prefer m∗

to M∗(w), implying that {m∗, w} is a blocking pair). Then, every agent from A is matched
in M̂k. By the definition of A∗, all agents from A∗ are unassigned in M̂0. As it holds
that k < |A∗|

2 and all agents from A∗ are unassigned in a stable matching Î0, there needs
to exist some j ∈ {0, 1, . . . , k − 1} such that three agents from A∗ that are unassigned
in a stable matching in Îj are matched in a stable matching in Îj+1. This contradicts

Lemma 10. It follows that the assumption |B| < |A∗|
2 is wrong, and thus, the algorithm

computes a 2-approximation.

Note that the above approach does not directly carry over to the case |U | 6= |W |. The
problem is that the matching M ′ constructed in the proof of Proposition 2 is not necessarily
stable in this case. The reason for this is that |U ∩A∗| > |W ∩A′| (or |W ∩A∗| > |U ∩A′|)
might hold. In this case, there remains at least one unassigned man from U ∩A∗ (or at least
one unassigned woman from W∩A∗) in M ′ which then forms a blocking pair with w∗ (or m∗)
for M ′. In fact, an optimal solution might be much larger than |A∗|, showing that better
lower bounds are needed to design a constant-factor approximation for the general case. For
example, consider an instance of Constructive-Exists-Reorder with |U | = |W | + 1,
where w∗ prefers all but one man m′ to m∗, and every other woman has m′ as her top-
choice. Furthermore, every man but m∗ has w∗ as his last choice, while m∗ has w∗ as his
top-choice. Then Î arises through the deletion of m∗ and w∗, and every stable matching in Î
leaves exactly one man m ∈ U \ {m∗,m′} unassigned. Consequently, we have A∗ = {m}.
However, every stable matching has to match every man from U \{m∗,m′} to a woman from
W \{w∗}, implying that m′ will be the only man unassigned in a stable matching. Therefore,
any optimal solution has to reorder the preferences of every woman from W \ {w∗}.

Remark (Destructive-Exists). As already briefly discussed in the introduction, instead of
considering Constructive-Exists it is also possible to consider Destructive-Exists where given
a SM instance and a man-woman pair {m∗, w∗}, we want to alter the SM instance such
that {m∗, w∗} is not part of at least one stable matching. Notably, polynomial-time al-
gorithms for Constructive-Exists carry over to Destructive-Exists, as we can solve the
latter problem by running the algorithm for Constructive-Exists for all man-woman pairs
involving one of m∗ and w∗. Moreover, it is also possible to adapt our hardness reduc-
tion for Constructive-Exists-Add to Destructive-Exists-Add: We introduce an
additional man m∗∗ which has w∗ as his top-choice and change the preferences of w∗

to w∗ : m∗ � m∗∗ � . . . and set {m∗∗, w∗} to the pair that we want to exclude from
some stable matching. Notably, a stable matching does not include {m∗∗, w∗} if and only
if it includes {m∗, w∗}. After the described modifications, the reduction no longer has any
implications concerning inapproximability, as we need to use that our budget is ` = k+

(
k
2

)
in the proof of correctness of the backward direction of the reduction (Lemma 2), which
needs to be slightly adapted. Thus, we can conclude that Destructive-Exists-Add pa-
rameterized by ` is W[1]-hard. By modeling Add by Swap as described in Section 3.1.3, we
can also conclude that Destructive-Exists-Swap parameterized by ` is W[1]-hard.

1024

Bribery and Control in Stable Marriage

4. Exact-Exists

In this section, we aim to make a given matching in an SM instance stable by performing
some manipulative actions. The difference to the Constructive-Exists setting considered
in the previous section is that now instead of one edge that should be included in some
stable matching, a complete matching is given which shall be made stable. At first sight,
it is unclear whether making the goal more specific in the sense of providing the complete
matching instead of just one edge in some matching makes the problem easier or harder. In
this section, we prove that providing this additional information makes the problem usually
easier, as for all manipulative actions X for which we showed hardness in the previous
section, Exact-Exists-X becomes polynomial-time solvable.6 The intuitive reason for this
difference is that the problem of making a given matching M∗ stable simplifies to “resolving”
all pairs that are blocking for M∗, which turns out to be solvable in polynomial-time. In
contrast to this, for Constructive-Exists-X , we also need to decide which matching
including the given pair we want to make stable, a task which turned out to be hard for
most manipulative actions.

Next, we start by considering the actions DeleteAcceptability , Reorder, and Swap before
turning to the manipulative actions Delete and Add for which we need to adapt the problem
definition.

4.1 Polynomial-Time Algorithms for DeleteAcceptability, Reorder, and Swap

As argued above, in the Exact-Exists setting, we need to “resolve” all pairs that are blocking
for the given matching M∗. This requires manipulating the preferences of at least one
agent a in each blocking pair such that it no longer prefers the other agent in the blocking
pair to M∗(a). For a matching M and an SM instance I, we denote by bp(M, I) the set of
all blocking pairs of M in I. For a blocking pair β = {m,w} ∈ bp(M, I) and an agent a ∈ β,
we denote by β(a) the other agent in the blocking pair.

The optimal solution for an instance of Exact-Exists-DeleteAcceptability is to
delete the acceptability of all blocking pairs. The set of blocking pairs can be computed
inO(n2) time. This solution is optimal since it is always necessary to delete the acceptability
of all blocking pairs and, by doing so, no new pairs will become blocking.

Observation 1. Exact-Exists-DeleteAcceptability is solvable in O(n2) time.

We now turn to Reorder. Since it is possible to resolve all blocking pairs containing
an agent by manipulating this agent, Exact-Exists-Reorder corresponds to finding a
minimum-cardinality subset A′ ⊆ U ∪W such that A′ covers bp(M∗, I), i.e., each pair that
blocks M∗ in the given SM instance I contains an agent from A′. From this observation,
the following proposition directly follows.

Proposition 3. Exact-Exists-Reorder reduces to finding a vertex cover in a bipartite
graph and is, hence, solvable in O(n2.5) time.

6. The only manipulative action for which Exact-Exists is harder than Constructive-Exists is Delete. How-
ever, recall that we came up with a modified definition of Exact-Exists for Delete. As this definition
makes Exact-Exists-Delete quite different from the problem for the other actions and also from
Constructive-Exists-Delete, this observation does not contradict our previous claim.

1025

Boehmer, Bredereck, Heeger, & Niedermeier

Proof. Given an instance of Exact-Exists-Reorder consisting of an SM instance I =
(U,W,P) together with a matching M∗ and budget `, we construct a bipartite graph as
follows. For each a ∈ A, we introduce a vertex va and we connect two vertices va, va′

if {a, a′} ∈ bp(M∗, I). Note that the resulting graph is bipartite, as there cannot exist
a blocking pair consisting of two men or two women. We compute a minimum vertex
cover X in the graph, i.e., a subset of vertices such that all edges are incident to at least
one vertex in X, using the Hopcroft–Karp algorithm in O(n2.5) time (Hopcroft & Karp,
1973). For each va ∈ X, we reorder a’s preferences such that M∗(a) becomes a’s top-choice.
After these reorderings, M∗ is stable, as for each blocking pair β, for at least one involved
agent a ∈ β, the agent M∗(a) is now a’s top-choice, and no new blocking pairs are created by
this procedure. Moreover, the computed solution is optimal. For the sake of contradiction,
let us assume that there exists a smaller solution. Then, there exists an {m,w} ∈ bp(M∗, I)
where neitherm’s nor w’s preferences have been modified. However, this implies that {m,w}
still blocks M∗.

Now, we turn to the manipulative action Swap. Here, the cost of resolving a blocking
pair {m,w} by manipulating m’s preferences is the number of swaps needed to swap M∗(m)
with w in the preferences of m, and the cost of resolving the pair by manipulating w’s
preferences is the number of swaps needed to swap M∗(m) with w in the preferences of w.
This observation could lead to the conjecture that it is optimal to determine for each
blocking pair the agent with the lower cost and then resolve the pair by performing the
corresponding swaps. However, this approach is not optimal, as by resolving some blocking
pair involving an agent also another blocking pair involving this agent might be resolved,
as we observe it in the following example:

Example 6. Consider an instance of Exact-Exists-Swap consisting of the following SM
instance together with budget ` = 3 and M∗ = {{m1, w3}, {m2, w2}, {m3, w1}}:

• m1 : w1 � w2 � w3,

• m2 : w2 � w3 � w1,

• m3 : w2 � w3 � w1,

• w1 : m1 � m2 � m3,

• w2 : m1 � m3 � m2, and

• w3 : m1 � m2 � m3.

The set of blocking pairs of M∗ is: bp(M∗, I) = {{m1, w1}, {m1, w2}, {m3, w2}}. In this
example, the cost to resolve the pair {m1, w1} by modifying m1’s preference list is two, i.e.,
swap w3 and w2 and subsequently w3 and w1. However, by doing this, also the other blocking
pair {m1, w2} including m1 is resolved. In fact, these swaps are part of the unique optimal
solution to make M∗ stable, which is to swap w3 and w2 and subsequently w3 and w1 in m1’s
preference relation and to swap m3 and m2 in w2’s preference relation.

In the following, we describe how on instance of Exact-Exists-Swap can be solved
in time cubic in the number of agents by reducing it to an instance of Minimum Cut. In
the Minimum Cut problem, we are given a directed graph G = (V,E), a cost function

1026

Bribery and Control in Stable Marriage

c : E → N ∪ {∞}, two distinguished vertices s and t and an integer k, and the question is
to decide whether there exists a subset of arcs of total weight at most k such that every
(s, t)-path in G includes at least one of these arcs.

Before describing the reduction, let us introduce some notation. For two agents a, a′ ∈ A,
let c(a, a′) denote the number of swaps needed such that a prefersM∗(a) to a′, i.e., c(a, a′) :=
max

(
rank(a,M∗(a)) − rank(a, a′), 0

)
, where rank(a, a′) is one plus the number of agents

which a prefers to a′. Moreover, for each a ∈ A, let qa denote the number of blocking pairs
involving a and let βa1 , . . . , β

a
qa be a list of these blocking pairs ordered decreasingly by the

number of swaps in a’s preferences needed to resolve the blocking pair, i.e., c(a, βa1 (a)) ≥
c(a, βa2 (a)) ≥ · · · ≥ c(a, βaqa(a)). For a blocking pair β ∈ U ×W with a ∈ β, we denote
by id(a, β) the position of blocking pair β in a’s list of blocking pairs, that is, id(a, β) = i
if β = βai . Using this notation, we now prove the following:

Theorem 5. Exact-Exists-Swap is solvable in O(n4) time.

Proof. Assume we are given an instance of Exact-Exists-Swap consisting of an SM in-
stance I = (U,W,P), a matching M∗, and budget `. Let A = {a1, . . . , a2n}. We first show
that there is always an optimal solution which, for each agent a ∈ A, only swaps M∗(a)
(upwards) in the preference of a (i.e., M∗(a) becomes more preferred by a). Let S be a list of
swap operations of minimum cardinality such that after performing the swap operations S,
the given matching M∗ is stable. Let a ∈ A be some agent and i ∈ N the number of swap
operations from S modifying the preferences of a. Then, it is possible to replace these i swap
operations by swapping M∗(a) by i positions to the top in a’s preference list. The resulting
list of swap operations S′ consists of the same number of swaps and makes M∗ still stable,
as there is no agent which a prefers to M∗(a) after the swap operations in S′ but not after
the swap operations in S. As a consequence, it is enough to consider the solutions to the
given Exact-Exists-Swap instance that correspond to a tuple (da1 , . . . , da2n), where da
encodes the number of times M∗(a) is swapped with its left neighbor in a’s preference
relation. Note that (da1 , . . . , da2n) is a valid solution to the problem if for each blocking
pair {m,w} ∈ bp(M∗, I) it holds that dm ≥ c(m,w) or that dw ≥ c(w,m). Now, we are
ready to reduce the given Exact-Exists-Swap instance to an instance of the Minimum
Cut problem.

Reduction to Minimum Cut. We start by constructing a weighted directed
graph G = (V,E) as follows: For each man m, we introduce one vertex for each block-
ing pair m is part of: um1 , . . . , u

m
qm . Similarly, for each woman w ∈ W , we introduce one

vertex for each blocking pair w is part of: uw1 , . . . , u
w
qw . Moreover, we add a source s and a

sink t.

Turning to the arc set, for each m ∈ U that is included in at least one blocking pair,
we introduce an arc from s to um1 of cost c(m,βm1 (m)). Moreover, for each i ∈ [qm − 1], we
introduce an arc from umi to umi+1 of cost c(m,βmi+1(m)). For each woman w ∈ W that is
included in at least one blocking pair, we introduce an arc from uw1 to t of cost c(w, βw1 (w)).
Moreover, for each i ∈ [qw − 1], we introduce an arc from uwi+1 to uwi of cost c(w, βwi+1(w)).
For each blocking pair β = {m,w} ∈ bp(M∗, I), we introduce an arc from umid(m,β) to uwid(w,β)
of infinite cost. Finally, we set k := `. We visualize the described reduction in Figure 7
where the graph corresponding to Example 6 is displayed.

1027

Boehmer, Bredereck, Heeger, & Niedermeier

s

um1
1

um1
2

um3
1

uw1
1

uw2
1

uw2
2

t

2

2

1

∞

∞

∞

1

2

2

Figure 7: Min-Cut graph constructed to solve Example 6. The number on an edge de-
notes its weight. Note that βm1

1 = {m1, w1}, βm1
2 = {m1, w2} with c(m1, β

m1
1 (m1)) = 2

and c(m1, β
m1
2 (m1)) = 1; βm3

1 = {m3, w2} with c(m3, β
m3
1 (m3)) = 2; βw1

1 = {m1, w1}
with c(w1, β

w1
1 (w1)) = 2; βw2

1 = {m1, w2}, βm2
2 = {m3, w2} with c(w2, β

w2
1 (w2)) = 2

and c(w2, β
w2
2 (w2)) = 1. The unique minimum (s, t)-cut is E′ := {(s, um1

1), (uw2
2 , uw2

1)}.

The general idea of the construction is that cutting an arc incident to some vertex uai of
an agent a ∈ A of cost c is equivalent to swapping up M∗(a) in a’s preference list c times.
Thereby, all blocking pairs with costs at most c for a are resolved (all paths visiting the
corresponding vertices are cut) and we encode for each agent a the entry in the solution tuple
by the arc incident to one of its vertices uai contained in the cut (where no arc contained in
the cut corresponds to performing no swaps). For each blocking pair the involved woman
or the involved man needs to resolve the pair, as otherwise there still exists an (s, t)-path.

Formally, we compute a minimum cut E′ ⊆ E of the constructed graph, which can be
done in O(|V | · |E|) = O(n4) time (King, Rao, & Tarjan, 1994; Orlin, 2013). Note that
for each agent a at most one arc to one of ua1, . . . , u

a
qa is contained in E′. For the sake of

contradiction, let us assume that there exist two vertices uai and uaj with i < j such that
both the arc to uai and uaj have been cut. Then, already cutting the arc to uai destroys
all (s, t)-paths visiting uaj , contradicting the minimality of the cut.

Using E′, we construct a solution tuple as follows. For each agent a ∈ A, we set da = 0
if no arc to a vertex from ua1, . . . , u

a
qa has been cut. Otherwise, let uai be the destination of

the arc in the cut. We set da = c(a, βai (a)). Note that the cost of the cut corresponds to
the cost of the constructed solution.

Correctness. It remains to prove that the solution (da1 , . . . , da2n) computed by our
algorithm is indeed a solution to the given Constructive-Exists-Swap instance and that
no solution of smaller cost exists. To prove the first part, for the sake of contradiction, let
us assume that there exists a pair β = {m,w} ∈ bp(M∗, I) that is still blocking, i.e., it
holds that dm < c(m,w) and dw < c(w,m). However, this implies that the graph G′ arising
from G through the deletion of the edges from E′ still contains a path from s to umid(m,β)

and from uwid(w,β) to t: No arcs on the unique path from s to umid(m,β) were cut by E′, as

they were all of cost greater than c(m,w). A symmetric argument shows that no edges on
the path from uwid(w,β) to t are contained in E′. Moreover, there exists an arc of infinite cost

from umid(m,β) to uwid(w,β) which implies the existence of an (s, t)-path in G′. This leads to a
contradiction.

1028

Bribery and Control in Stable Marriage

To prove the second part, let us assume that there exists a solution (d′a1 , . . . , d
′
a2n) of

smaller cost. However, one can construct from this a cut E′′ of smaller cost than the
computed minimum cut E′, a contradiction. For each agent a ∈ A, we include in the
cut E′′ the arc to the vertex from ua1, . . . , u

a
qa of maximum index i such that c(a, βai (a)) ≤ d′a.

Clearly, E′′ has the same cost as (d′a1 , . . . , d
′
a2n) and is therefore cheaper than the computed

minimum cut E′, so it remains to show that E′′ is indeed an (s, t)-cut, i.e., after deleting all
arcs from E′′, there is no (s, t)-path. For the sake of contradiction, let us assume that there
exists an (s, t)-path after deleting the arcs from E′′. Then there exist m ∈ U and w ∈ W
with i ∈ [qm] and j ∈ [qw] such that this path includes the arc (umi , u

w
j). However, as it

needs to hold that d′m ≥ c(m,βmi (m)) or d′w ≥ c(w, βwj (w)) (as otherwise {m,w} would
block M∗ after the bribery), either an arc from the unique path from s to umi or an arc
from the unique path from uwj to t is part of E′′. This leads to a contradiction.

Having seen that Exact-Exists-Swap/DeleteAcceptability/Reorder are solv-
able in polynomial time, it is natural to ask whether these tasks remain tractable if we
instead of specifying a full matching only specify a set of edges that should be made part
of a stable matching. Note that we have seen in Section 3.1 that Constructive-Exists-
Swap/DeleteAcceptability/Reorder, where the goal is to make just one edge part of
a stable matching, are NP-hard. Looking now at cases in between these two extremes, i.e.,
an arbitrary number j of edges that should be included in some stable matching is given, it
is straightforward to come up with an FPT-algorithm with respect to the parameter n− j.

Proposition 4. For a given SM instance I and partial matching M̃ ⊆ U×W of size j, one
can decide in (n − j)!nO(1) time whether it is possible to modify I using Swap/ DeleteAc-

ceptability/ Reorder actions such that M̃ is part of some stable matching.

Proof. Let X ∈ {Swap,DeleteAcceptability,Reorder}. The idea is to brute-force over all

possibilities M̃ ′ of matching the remaining 2(n − j) agents not included in M̃ to each
other. There are (n − j)! such possibilities (fix an ordering of men and iterate over all
possible orderings of women and match two agents at the same position in the orderings to
each other). For each possibility, we employ the algorithm for Exact-Exists-X to decide

whether the complete matching M̃ ∪ M̃ ′ can be made stable using at most ` manipulative
actions of type X .

4.2 Delete and Add

In this section, we turn to the manipulative actions Delete and Add for which we needed
to adapt the definition of Exact-Exists. Recall that in the context of these manipulative
actions we are given a complete matching M∗ involving all agents in the instance and the
goal is to modify the instance such that there exists a stable matching M ′ with M ′ ⊆
M∗. First, we show that for Add the problem can be solved in linear time. Second,
we argue that, in contrast to all other manipulative actions, the Exact-Exists question is
computationally hard for the manipulative action Delete. This is at first sight surprising
since Delete is the only manipulative action for which the Constructive-Exists question is
solvable in polynomial time. However, it can be easily explained by the fact that we need
to use the adapted definition of the Exact-Exists problem here.

1029

Boehmer, Bredereck, Heeger, & Niedermeier

Data: An SM instance I, a complete matching M∗, a budget `, and two sets Uadd

and Wadd.
1 Set XA := {w ∈Wadd : ∃m ∈ U \ Uadd with M∗(u) = w};
2 while there exists a lonely woman w ∈Worig ∪XA and some man m ∈ Uorig ∪XA

with w �m M∗(m) do
3 Add M∗(w) to XA;
4 if M∗|Uorig∪Worig∪XA is stable and |XA| ≤ ` then
5 return XA;
6 else
7 return False;

Algorithm 1: Linear-time algorithm for Exact-Exists-Add.

We start by showing that Exact-Exists-Add is solvable in linear time in the input size.
On an intuitive level, this is due to the fact that, for Add, it is already determined by the
instance which agents we have to insert to allow for the existence of a stable matching M ′ ⊆
M∗, as in case some agent a blocks the matching M ′ in the instance consisting of agents
Uorig ∪ Worig ∪ XA for some XA ⊆ Uadd ∪ Wadd the only possibility to resolve this is to
add M ′(a) to XA. Following this idea, we prove that Exact-Exists-Add is linear-time
solvable.

Proposition 5. Exact-Exists-Add can be solved in O(n2) time.

Proof. Assume we are given an instance of Exact-Exists-Add consisting of an SM in-
stance (U,W,P) together with two subsets Uadd ⊆ U and Wadd ⊆W , a matching M∗, and
budget `. For a set XA ⊆ Uadd ∪ Wadd, we call an agent a ∈ Uorig ∪ Worig ∪ XA lonely
if M∗(a) /∈ Uorig∪Worig∪XA. Note that for a solution XA of agents to be added, there can-
not exist both a lonely man and a lonely woman, as they otherwise would form a blocking
pair. We assume without loss of generality that the instance admits a solution XA without
a lonely man or no solution at all (we can do this by applying the following algorithm twice
(once with the role of men and women switched) and then taking the smaller solution). We
show that Algorithm 1 solves the problem in O(n2) time. As there exists no lonely man,
for each man m ∈ Uorig ∪XA also M∗(m) needs to be contained in Worig ∪XA. Thus, every
woman added to XA in Line 1 needs to be contained in every solution. Moreover, there
cannot exist a lonely woman w and a man m ∈ Uorig ∪XA which prefers w to M∗(m), as
otherwise w and m would form a blocking pair. This implies that all agents added to XA

in Line 3 are necessary to create a stable matching which is a subset of M∗. By adding
more agents to XA, it is never possible to resolve any blocking pairs for M∗|Uorig∪Worig∪XA ,
as we have already ensured that no lonely woman is part of a blocking pair. Thereby, if the
instance admits a solution, then XA computed by Algorithm 1 is a solution of minimum
size. This proves the correctness of the algorithm.

All parts of Algorithm 1 except for the while-loop can be clearly performed in O(n2)
time. To see that the while-loop can be executed in O(n2) time overall, we compute the
set of lonely women once before entering the while-loop. The while-loop can be executed
at most n times since there are only n women. In each execution of the while-loop, we
update the set of critical lonely women in O(n) time by checking for each woman w′ ∈

1030

Bribery and Control in Stable Marriage

Worig ∪ (XA ∩W) whether the man M∗(w) added in the last execution of the while-loop
prefers w′ to M∗(M∗(w)) and adding w′ to the set of lonely women if this is the case.

In contrast to this, for Delete, our modified goal definition allows for more flexibility
in the problem to encode computationally hard problems, as it is possible to decide which
agents one wants to delete from the instance to resolve all initially present blocking pairs.
The intuitive reason why this problem is NP-hard is the following: First, one can ensure
that for each deleted agent a, agent M∗(a) needs to be deleted as well. By ensuring this,
selecting the n − ` agents that remain after the modifications (and thereby also implicitly
the ` agents to be deleted) corresponds to finding an independent set of size n − ` in the
“underlying graph”, where each vertex corresponds to a pair in M∗ and two vertices are
connected if the two corresponding pairs cannot be part of the same stable matching. Note
that in contrast to Proposition 3, this graph is no longer bipartite. As Independent
Set is NP-complete (Karp, 1972), it follows that Exact-Exists-Delete (and, in fact,
also Exact-Unique-Delete, where the problem is to make a given matching the unique
stable matching) is also NP-complete. In the following, we present this hardness result in
more detail before showing that Exact-Exists-Delete parameterized by the budget ` is
fixed-parameter tractable.

Proposition 6. Exact-Exists/Unique-Delete is NP-complete. This also holds if one
is only allowed to delete pairs from the given matching M∗.

Proof. For Exact-Exists-Delete, membership in NP is obvious, as it is possible to de-
termine in polynomial time whether a matching is stable. Further, for Exact-Unique-
Delete, membership in NP follows from the fact that it is possible to determine in polyno-
mial time whether a stable matching is unique, e.g., by running the Gale-Shapley algorithm
to compute a stable matching M and afterwards the Gale-Shapley algorithm with roles
of women and men swapped to compute a stable matching M ′ and checking whether M
and M ′ are identical; then and only then M is the unique stable matching.

We show the NP-hardness of Exact-Exists/Unique-Delete by a reduction from the
NP-complete Independent Set problem (Karp, 1972). Given an undirected graph G
and an integer k, Independent Set asks whether there are k pairwise non-adjacent ver-
tices in G. Given an Independent Set instance G = (V,E) and integer k, we denote
by u1

v, . . . u
dv
v the list of all neighbors of a vertex v ∈ V . The general idea of the reduction

is to introduce for each vertex v ∈ V a man-woman pair who are matched to each other in
the given matching M∗ and a penalizing gadget that ensures that if one of the two agents
from this pair is deleted, then the other one needs to be deleted as well. We construct the
preferences of the agents in such a way that for every edge {v, v′} ∈ E, the agents corre-
sponding to v prefer the agent corresponding to v′ of opposite gender to its partner in M∗.
Thus, two pairs from M∗ can be part of the same stable matching if and only if they are
non-adjacent in the given graph. Hence, finding a solution to the manipulation problem of
size ` corresponds to finding an independent set of size |V | − `.

Formally, the construction of the corresponding Exact-Exists-Delete instance works
as follows. In the SM instance I, we introduce for each v ∈ V a gadget consisting of one
vertex manmv, one vertex woman wv, and dummy men and women m̃i

v and w̃iv for i ∈ [2|V |].

1031

Boehmer, Bredereck, Heeger, & Niedermeier

For all v ∈ V , the vertex man mv and the vertex woman wv have the preferences

mv : wu1v � · · · � wudvv � wv � w̃
1
v � · · · � w̃2|V |

v � (rest)
. . . ,

wv : mu1v
� · · · � m

udvv
� mv � m̃1

v � · · · � m̃2|V |
v � (rest)

. . .

and the dummy men and women m̃i
v and w̃iv for i ∈ [2|V |] have the preferences

m̃i
v : wv � w̃iv �

(rest)
. . . , w̃iv : mv � m̃i

v �
(rest)
. . . .

We set M∗ := {{mv, wv} : v ∈ V } ∪ {{m̃i
v, w̃

i
v} : v ∈ V, i ∈ [2|V |]} and ` := 2(|V | − k). We

now prove the correctness of our construction.

(⇒) Let V ′ ⊆ V be an independent set of size k in G. We claim that deleting the
agent set A = {{mv, wv} : v ∈ V \ V ′}, which is of size 2(|V | − k) = `, is a solution to the
constructed Exact-Exists-Delete instance, i.e., M ′ = M∗ \ {{mv, wv} : v ∈ V \ V ′} is
a stable matching in the resulting instance. For the sake contradiction, assume that there
exists a blocking pair for M ′ in I \A. However, no vertex man or vertex woman can be part
of such a blocking pair, as they are all matched to their top-choice among the remaining
agents. Every dummy agent is matched to the best non-vertex agent and thus does not form
a blocking pair for M ′. Thus, M ′ is stable (in fact, M ′ is even the unique stable matching
in I \A).

(⇐) Assume that there exists a subset A′ ⊆ U ∪W of agents of size at most ` = 2(n−k)
such that some matching M ′ ⊆ M∗ is stable in I \ A′. First of all note that it is never
possible to delete for some v ∈ V all corresponding dummy men or to delete all dummy
women, as the number of both dummy men and dummy women for each vertex exceeds
the given budget. From this it follows that if A′ contains mv for some v ∈ V , then it
also has to contain wv. The reason for this is that otherwise wv together with some non-
deleted dummy agent m̃j

v forms a blocking pair for M ′. Similarly, if A′ contains wv for
some v ∈ V , then it also contains mv. We now claim that V ′ := {v ∈ V : mv /∈ A′} forms
an independent set of size at least k. First of all note that V ′ has size at most k, as there
exist n vertices, |A′| ≤ 2(|V | − k) = `, and mv ∈ A′ implies wv ∈ A′. For all v, v′ ∈ V ′ we
have that mv and wv′ are still present in I \ A′ by the definition of V ′. Thus, {v, v′} 6∈ E
for all v, v′ ∈ V ′, as otherwise {mv, wv′} forms a blocking pair for M ′ in I \A′.

In contrast to the W[1]-hardness results for the other manipulative actions for Con-
structive-Exists, Exact-Exists-Delete parameterized by ` is fixed-parameter tractable.
The algorithm is based on a simple search tree. We pick a blocking pair and branch over
which endpoint of the blocking pair gets deleted. After deleting the selected endpoint, we
recompute the set of blocking pairs and decrease ` by 1 (see Algorithm 2).

Proposition 7. Exact-Exists-Delete can be solved in O(n22`) time.

Proof. We claim that Algorithm 2 solves Exact-Exists-Delete in the stated running
time. The correctness follows directly from the fact that for each blocking pair one of
its endpoints needs to be deleted. The running time follows from the fact that the set
of blocking pairs can be determined in O(n2) time and the search tree has depth ` and
branches into two children at each node.

1032

Bribery and Control in Stable Marriage

Data: An SM instance I, a complete matching M∗, and a budget `.
1 Set A′ = ∅ and let P be the set of blocking pairs for M∗ in I;
2 while there exists a pair in P do
3 if ` ≤ 0 then
4 return False;
5 Pick a pair {w,m} ∈ P and branch over its endpoints v = m or v = w;
6 Set A′ := A′ ∪ {v} and ` := `− 1;
7 Set P to be the set of blocking pairs for M∗ \ {e : e ∩A′ 6= ∅} in I \A′;
8 return A′;

Algorithm 2: FPT algorithm wrt. ` for Exact-Exists-Delete.

5. Exact-Unique

In this section, we turn from the task of making a given matching stable to the task of
making the given matching the unique stable matching. We show that this change makes
the considered computational problems significantly more demanding in the sense that the
Exact-Unique problem is W[2]-hard with respect to ` for Reorder and Add and NP-complete
for Swap. In contrast, the problem for DeleteAcceptability is solvable in polynomial time.
Recall that we have already proven in Proposition 6 that Exact-Unique is NP-complete for
Delete.

5.1 Hardness Results

Both the W[2]-hardness result for the manipulative action Reorder and the NP-completeness
for Swap follow from the same parameterized reduction from the NP-complete and W[2]-
complete Hitting Set problem parameterized by solution size (Downey & Fellows, 2013)
with small modifications. In an instance of Hitting Set, we are given a universe Z, a
family F = {F1, . . . , Fp} of subsets of Z, and an integer k, and the task is to decide whether
there exists a hitting set of size at most k, i.e., a set X ⊆ Z with |X| ≤ k and X ∩ F 6= ∅
for all F ∈ F . The general idea of the construction is as follows: For each set F ∈ F , we
add a set gadget consisting of two men and two women, and, for each element z ∈ Z, we
add an element gadget consisting of a man-woman pair. We connect all set gadgets to the
element gadgets corresponding to the elements in the set. The preferences are constructed
in a way such that in each set gadget where none of the element gadgets connected to it is
manipulated, the two women can switch their partners and the resulting matching is still
stable. In contrast, when an element gadget connected to the set gadget is manipulated,
then this switch creates a blocking pair and every stable matching contains the same edges
in this gadget. Thereby, the given matching M∗ is the unique stable matching in the altered
instance if and only if the manipulated element-gadgets form a hitting set. Note that in the
following reduction, rather unintuitively, we manipulate agents to rank their partner in M∗

worse to make M∗ the unique stable matching.

Theorem 6. Exact-Unique-Reorder parameterized by ` is W[2]-hard, and this also
holds if the given matching M∗ is already stable in the original instance and one is only
allowed to modify the preferences of agents of one gender.

1033

Boehmer, Bredereck, Heeger, & Niedermeier

w1

m1

w2

m2

w3

m3

w1
{1,2,3}

m1
{1,2,3}

w2
{1,2,3}

m2
{1,2,3}

w1
{1,2}

m1
{1,2}

w2
{1,2}

m2
{1,2}

1

1

1

1

2

1

2

1

1

25

12

4

3

3

2

2

2

1

2

1

1

2 4

1
2

3

3

2

1

1

Figure 8: Example of the hardness reduction from Theorem 6 for the Hitting Set in-
stance Z = {1, 2, 3}, F = {{1, 2, 3}, {1, 2}}.

Proof. We give a parameterized reduction from Hitting Set, which is known to be W[2]-
complete parameterized by the solution size k (Downey & Fellows, 2013). Given a Hitting
Set instance ((Z,F = {F1, . . . , Fq}), k), for each element z ∈ Z, we add a man mz and a
woman wz, which are the top-choices of each other (the preferences of both mz and wz are
extended arbitrarily to include all agents of opposite sex). For each set F = {z1, . . . , zq} ∈ F ,
we add two men m1

F and m2
F and two women w1

F and w2
F with the following preferences:

m1
F : w1

F � wz1 � wz2 � · · · � wzq � w2
F �

(rest)
. . . , m2

F : w2
F � w1

F �
(rest)
. . . ,

w1
F : m2

F � m1
F �

(rest)
. . . , w2

F : m1
F � m2

F �
(rest)
. . . .

We set M∗ := {{mz, wz} : z ∈ Z} ∪ {{m1
F , w

1
F }, {m2

F , w
2
F } : F ∈ F} to be the man-optimal

matching, and ` := k (see Figure 8 for a visualization).

We now show that the given Hitting Set instance admits a solution of size k if and
only if it is possible to make M∗ the unique stable matching in the constructed SM instance
by reordering the preferences of at most ` agents.

(⇒) Let X ⊆ Z be a hitting set. For z ∈ X, we modify the preferences of wz to

be the following: wz : m1
F1
� m1

F2
� · · · � m1

Fq
� mz �

(rest)
. . . . Matching M∗ is still

a stable matching, as each man is matched to his top-choice. To show that M∗ is the
unique stable matching, we utilize that if a second stable matching M ′ exists, then the
union M∗ ∪M ′ needs to contain at least one cycle which consists of alternating edges from
the two matchings. Moreover, as M∗ is man-optimal (as every man is matched to his top-
choice), each woman contained in the cycle needs to prefer the man matched to her in M ′

to the man matched to her in M∗. We now argue that such a cycle cannot exist and thereby
that M∗ is the unique stable matching. First of all, note that this cycle cannot contain
an agent mz (and thus neither wz) for some z ∈ Z, as no woman prefers such a man to
her partner in M∗. Thus, M ′ contains {mz, wz} for every z ∈ Z. Next, we show that the
cycle does not contain agent m1

F for all F ∈ F . Because X contains at least one zF ∈ F ,
the preferences of at least one woman wzF with zF ∈ F have been reordered such that wzF
now prefers m1

F to mzF . As no woman wz for z ∈ Z can be part of a cycle in M∗ ∪M ′, a
cycle in M∗ ∪M ′ containing m1

F would imply that M ′ matches m1
F to some woman from a

set-gadget that is not his top-choice. However, then M ′ is blocked by the pair {m1
F , wz}, a

contradiction. Hence, the cycle cannot contain an agent m1
F . Therefore, the cycle contains

an agent m2
F . Since m1

F and therefore also M∗(m1
F) = w1

F are not contained in the cycle,

1034

Bribery and Control in Stable Marriage

this implies that M ′ matches m2
F to a woman to which he prefers w1

F . Thus, M ′ is blocked
by the pair {m2

F , w
1
F } in this case, a contradiction. As we have exhausted all cases, it follows

that M∗ is the unique stable matching after the bribery.

(⇐) Let S be the set of at most ` agents such that modifying their preferences can
make M∗ the unique stable matching. From this, we construct a solution X to the given
Hitting Set problem as follows. For each agent mz or wz contained in S, we add the
element z to X, and for each agent mi

F or wiF contained in S, we add an arbitrary ele-
ment z ∈ F to X. Clearly, |X| ≤ |S| ≤ ` = k, so it remains to show that X is a hitting
set.

Assume that F ∈ F does not intersect X. Then the preferences of mi
F , wiF ,

and all wz for z ∈ F are unchanged after the bribery. We claim that M ′ :=
(
M∗ \

{{m1
F , w

1
F }, {m2

F , w
2
F }}

)
∪ {{m1

F , w
2
F }, {m2

F , w
1
F }} is then a stable matching, contradicting

the fact that M∗ is the unique stable matching.

As M∗ is stable and M∗ and M ′ only differ in m1
F , w2

F , m2
F , and w1

F , any blocking
pair for M ′ must contain an agent mi

F or wiF for some i ∈ {1, 2}. Agents w1
F and m2

F

are matched to their top-choice and thus are not part of a blocking pair. The only agent
which m2

F prefers to w1
F is w2

F . However, w2
F is matched to her top-choice in M ′. Similarly,

as after the bribery all agents which m1
F prefers to w2

F are matched to their top-choices,
and thus do not participate in a blocking pair. Thus, no blocking pair for M ′ exists.

We now adapt the parameterized reduction presented in the proof of Theorem 6 to show
that the Exact-Unique problem parameterized by ` is also W[2]-hard for the manipulative
action Add.

Proposition 8. Exact-Unique-Add parameterized by ` is W[2]-hard, and this also holds
if the given matching M∗ is already stable in the instance restricted to Uorig∪Worig and one
is only allowed to add agents of one gender.

Proof. We show Proposition 8 by adapting the reduction from the proof of Theorem 6.
We adapt the reduction slightly by changing the preferences of wz for all z ∈ Z

to wz : m1
F1
� m1

F2
� · · · � m1

Fp
� mz �

(rest)
. . . . Moreover, we set M∗ := {{mz, wz} :

z ∈ Z} ∪ {{m1
F , w

1
F }, {m2

F , w
2
F } : F ∈ F}, we set ` := k, and the agents that can be added

to Uadd := ∅ and Wadd := {wz : z ∈ Z}.
(⇒) Let X ⊆ Z be a hitting set. We set XA = {wz : z ∈ X} to be the set of added

agents. We claim that M ′ = {{mz, wz} : z ∈ X} ∪ {{m1
F , w

1
F }, {m2

F , w
2
F } : F ∈ F} ⊆ M∗

is the unique stable matching after adding the agents from XA. First of all note that M ′

is stable, as all matched men are matched to their top choice and no woman prefers one of
the unassigned man to their assigned partner. The argument why M ′ is the unique stable
matching is analogous to the proof of Theorem 6.

(⇐) Let XA be the set of agents added in a solution to the constructed Exact-Unique-
Add instance and let M ′ := M∗|Uorig∪Worig∪XA be the unique stable matching. We claim
that X = {z ∈ Z : wz ∈ XA} is a hitting set.

Assume that F ∈ F does not intersect X. Then M ′′ :=
(
M ′ \ {{m1

F , w
1
F }, {m2

F , w
2
F }}

)
∪

{{m1
F , w

2
F }, {m2

F , w
2
F }} is also a stable matching by an argument analogous to the proof of

Theorem 6, contradicting the fact that M∗ is the unique stable matching.

1035

Boehmer, Bredereck, Heeger, & Niedermeier

Finally, we adapt the reduction from Theorem 6 to prove NP-hardness for the manip-
ulative action Swap. Here, we utilize the fact that Reorder operations can be modeled by
(up to n2 + n) Swap operations (see Section 2.5 for a high-level discussion of this fact).
To do so, we adapt the reduction such that it is only possible to modify the preferences of
women wz and add an “activation cost” to modifying the preferences of wz such that only
the preferences of a fixed number of women can be modified but for these we can modify
them arbitrarily.

Proposition 9. Exact-Unique-Swap is NP-complete, and this also holds if the given
matching M∗ is already stable in the original instance and we are only allowed to modify
the preferences of agents of one gender.

Proof. Membership in NP is obvious, as it is possible to determine in polynomial time
whether a stable matching is unique (as discussed in Proposition 6).

We adapt the reduction from Hitting Set to Exact-Unique-Reorder from Theo-
rem 6 as follows. Let (Z,F , k) be an instance of Hitting Set, and let (I,M∗, `) be the
instance of Exact-Unique-Reorder constructed in the reduction described in the proof
of Theorem 6. We assume that ` ≤ 2n, as otherwise I is a trivial YES-instance. Further-
more, we assume n ≥ 3, since otherwise the Hitting Set instance can be solved by brute
force. In the following we modify (I = (U,W,P),M∗, `) as follows. We add n5 men md

1,
. . . , md

n5 and n5 women wd1 , . . . , wdn5 , where, for all i ∈ [n5], the preferences of md
i and wdi

are as follows (indices are taken modulo n5):

md
i : wdi � wdi+1 � wdi+2 � · · · � wdn5+i−1�

(rest)
. . . ,

wdi : md
i � md

i+1 � md
i+2 � · · · � md

n5+i−1�
(rest)
. . . .

Now, for each z ∈ Z, we add in wz’s preference list n2 dummy men after mz, and the
remaining dummy men at the end of wz’s preference list. For all other women w ∈W \{wz :
z ∈ Z}, we insert n4 dummy men between each two neighboring agents in w’s preferences.
For each men m ∈ U , we insert n4 dummy women between any two neighboring agents
in m’s preferences. We set M ′ := M∗ ∪ {{md

i , w
d
i } : i ∈ [n5]} and the overall budget

to `′ := k(n2 + n). The reduction clearly runs in polynomial time, so it remains to show its
correctness.

(⇒) Let X be a hitting set. For each z ∈ X, we change the preferences of wz by
swapping mz down n2 + n times such that after the modification wz prefers, for all F ∈ F ,
the agent m1

F to mz. Thus, the overall number of performed swaps is at most `′. By
Lemma 7, any stable matching in the modified instance contains the edges {md

i , w
d
i } for

each i ∈ [n5]. It follows by the same arguments as in the proof of Theorem 6 that M ′ is the
unique stable matching after the bribery.

(⇐) Since `′ < n4, we can swap pairs containing two non-dummy agents only for
agents wz for some z ∈ Z. Note that swapping the agent mz with any non-dummy agent in
the preferences of wz requires at least n2 swaps, and thus, this happens for at most k such
agents. The corresponding elements of Z now form a hitting set by arguments analogous
to the proof of Theorem 6.

Remark. In Exact-Unique, we are given a matching M∗ and want to make this matching
stable. However, another possible objective might be to just ensure that there exists a

1036

Bribery and Control in Stable Marriage

unique stable matching in the manipulated instance, irrespective of which matching is the
stable one. We remark that the reductions presented in this section also show W[2]-hardness
parameterized by the budget respectively NP-hardness for this objective.

5.2 Algorithms

Contrasting the hardness results for all other manipulative actions, Exact-Unique-
DeleteAcceptability turns out to be solvable in polynomial time. On an intuitive
level, one reason for this is that we can only delete agents from the preferences of other
agents, but we cannot swap the order of agents in the preferences. In particular, we can-
not change whether an agent a is before or after M∗(a′) in the preferences of a′. Recall
that the hardness reductions for Reorder and Swap crucially rely on this feature. We start
this subsection by giving definitions and facts about rotations (Gusfield & Irving, 1989)
that we will use afterwards to construct a polynomial-time algorithm for Exact-Unique-
DeleteAcceptability and an XP-algorithm for Exact-Unique-Reorder parameter-
ized by `. For more details on rotations, we refer to the monograph of Gusfield and Irving
(1989).

For a stable matching M and a man m ∈ U , let sM (m) denote the first woman w
succeeding M(m) in m’s preference list who prefers m to M(w). If no such woman
exists, then we set sM (m) := ∅. A rotation exposed in a stable matching M is a se-
quence ρ = (m1, w1), . . . , (mr, wr) such that for each k ∈ [r] it holds that {mk, wk} ∈ M
and wk+1 = sM (mk), where indices are taken modulo r. We call such a rotation a
man-rotation and sM (m) the rotation successor of m. There is a close relation be-
tween rotations and stable matchings (see e.g. Gusfield & Irving, 1989). It is easy to
see that given a rotation (m1, w1), . . . , (mr, wr) exposed in a stable matching M , match-
ing M ′ :=

(
M \ {{mk, wk} : k ∈ [r]}

)
∪ {{mk, wk+1} : k ∈ [r]} is again a stable matching.

We will mainly use the “reverse direction” of this statement, namely that the abscence of
rotations can be used to prove the uniqueness of a stable matching.

Example 7. Consider the SM instance depicted in Fig. 8 in Section 5.1 and let M be
the matching in which every man is matched to his top-choice. Then, the rotation succes-
sor of m1

{1,2} in M is w2
{1,2}, i.e., sM (m1

{1,2}) = w2
{1,2}. Moreover, the rotation successor

of m2
{1,2} is w1

{1,2}, i.e., sM (m2
{1,2}) = w1

{1,2}. Thus, (m1
{1,2}, w

1
{1,2}), (m

2
{1,2}, w

2
{1,2}) is a

rotation exposed in the stable matching M , which proves that M is not the unique stable
matching.

We define the rotation successor sW (w) of w ∈W analogously and call a rotation where
the roles of men and women are switched woman-rotation. As a matching is unique if and
only if it exposes neither a man-rotation nor a woman-rotation (Gusfield & Irving, 1989),
we can reformulate the goal of Exact-Unique-DeleteAcceptability: Modify the given
SM instance by deleting the acceptability of at most ` pairs such that neither a man-rotation
nor a woman-rotation is exposed in M∗.

We start by making two straightforward observations:

Observation 2. To determine whether a stable matching M is the unique stable matching,
it is enough to know the rotation successors of all agents.

1037

Boehmer, Bredereck, Heeger, & Niedermeier

This observation gives rise to a simple algorithm to check whether a stable matching M
exposes a man-rotation. We create a sink t and for each man m ∈ U a vertex vm. We insert
an arc from vm to vm′ if M(m′) is m’s rotation successor in M , i.e., M(m′) = sM (m), and
an arc from vm to t if m does not have a rotation successor. Then, checking whether M
exposes a man-rotation reduces to checking whether there exists a cycle in the constructed
directed graph.

In the following, for an agent a ∈ A, we refer to its preferences induced by the set of all
agents it prefers to M(a) as the first part of its preferences and to its preferences induced
by the set of all agents to which it prefers M(a) as the second part of its preferences. Using
this notation, we can make the following observation, which holds also if the roles of women
and men are switched:

Observation 3. To determine whether a stable matching M exposes a man-rotation, it is
enough to know the first part of the women’s preferences and the second part of the men’s
preferences.

A simple approach to solve the Exact-Unique-DeleteAcceptability problem would
be to start by computing the set of rotations in the given matching and delete the acceptabil-
ity of one pair in each rotation. However, thereby, we would change the rotation successors
of some agents, which could lead to new rotations. That is why we need to be careful when
choosing the pair within each rotation which one wants to delete.

To circumvent this issue, we first observe that, by Observation 3, it is never beneficial
to delete the acceptability of some pair {m,w} with m ∈ U and w ∈ W if m and w both
appear in the same part of each others preferences, as this implies that none of them can be
the rotation successor of the other. Moreover, it is possible to separately solve the problem
of ensuring that the given matching M∗ does not expose a man-rotation and the problem of
ensuring that the given matchingM∗ does not expose a woman-rotation. To solve the former
problem, we only care about the rotation successors of all men. Thereby, we only delete
the acceptability of pairs {m,w} where w appears in the second part of m’s preferences
and m appears in the first part of w’s preferences. For woman-rotations, the situation is
symmetric. We solve both problems by reducing them to the Minimum Weight Spanning
Anti-Arborescence problem. In an instance of the Minimum Weight Spanning Anti-
Arborescence problem, we are given a directed graph G = (V,E) with arc costs and a
budget k ∈ N. The question is whether there exists a spanning anti-arborescence, i.e.,
an acyclic subgraph of G such that all vertices of G but one have out-degree exactly one,
of cost at most k. Minimum Weight Spanning Anti-Arborescence can be solved
in O(|E|+ |V | log |V |) time (Edmonds, 1967; Gabow, Galil, Spencer, & Tarjan, 1986).

Given an SM instance I = (U,W,P) and a matching M∗, the basic idea of the algorithm
is the following (we present the algorithm for excluding man-rotations; excluding woman-
rotations can be done symmetrically): For a set F of deleted acceptabilities, let sFM∗(m)
denote the rotation successor of m after the deletion of F . To ensure that there is no
man-rotation, we need to find a set F of deleted acceptabilities such that the graph where
the agents form the vertex set and the arc set is {(w,m) : m ∈ U ∧ w ∈ W ∧ {m,w} ∈
M∗}∪{(m, sFM∗(m)) : m ∈ U with sFM∗(m) 6= ∅} is acyclic. Note that we can change sM∗(m)
only by deleting the pair {m, sM∗(m)}. In this case, the new rotation successor becomes the
first woman w′ succeeding sM∗(m) in m’s preference list which prefers m to M∗(w′). Thus,

1038

Bribery and Control in Stable Marriage

the costs of making a woman w′ the rotation successor of m is the number of women w
such that m prefers M∗(m) to w and w to w′ and w prefers m to M∗(w). We now argue
that the problem of making {(w,m) : m ∈ U ∧ w ∈ W ∧ {m,w} ∈ M∗} ∪ {(m, sFM∗(m)) :
m ∈ U with sFM∗(m) 6= ∅} acyclic can be expressed as an instance of Minimum Weight
Spanning Anti-Arborescence.

Theorem 7. Exact-Unique-DeleteAcceptability can be solved in O(n2) time.

Proof. Clearly, any solution needs to delete all blocking pairs. Thus, we assume without
loss of generality that M∗ is a stable matching.

Given an instance (I = (U,W,P),M∗, `) of Exact-Unique-DeleteAcceptability,
we reduce the problem to two instances of the Minimum Weight Spanning Anti-
Arborescence problem. The first instance of this problem that is responsible for delet-
ing all man-rotations is constructed as follows. The graph contains a vertex vm for each
edge {m,w} ∈ M∗ as well as a sink t. We add an arc (vm, vm′) if M∗(m′) prefers m to m′

and m prefers M∗(m) to w′. The weight of this arc is the number of women w∗ such that m
prefers w∗ to M∗(m′) and M∗(m) to w∗, and w∗ prefers m to M∗(w∗) (i.e., the number
of acceptabilities which need to be deleted to make M∗(m′) the rotation successor of m).
Furthermore, there is an arc (vm, t) for all {m,w} ∈ M∗. The weight of this arc is the
number of women w∗ such that m accepts w∗ and prefers M∗(m) to w∗, and w∗ prefers m
to M∗(w∗) (i.e., the number of acceptabilities which need to be deleted to make ∅ the ro-
tation successor of m). We call this graph HU . Similarly, we construct a graph HW (where
the roles of men and women are exchanged).

We claim that M∗ can be made the unique stable matching after the deletion of ` pairs
if and only if the minimum weight anti-arborescences in HU and HW together have weight
at most `.

(⇒) Let F ⊆ {{m,w} : m ∈ U,w ∈ W} be a set of at most ` pairs whose deletion
make M∗ the unique stable matching. Let FW := {{m,w} ∈ F : w �m M∗(m)} and FU :=
{{m,w} ∈ F : m �w M∗(w)}. For any man m, let sm := vM∗(w′), where w′ is the
woman best-ranked by m succeeding M∗(m) such that w prefers m to M∗(w) after the
manipulation, i.e,. w′ is the rotation successor of m after the manipulation. If no such
woman exists, then we set sm := t. We construct an anti-arborescence in AU of cost at
most |FU | by adding for each pair {m,w} ∈ M∗ the arc (vm, sm) to the anti-arborescence.
We claim that AU is an anti-arborescence. Every vertex but t has exactly one outgoing
arc, so it is enough to show that there does not exist a cycle. As we have inserted for each
man an arc from the node including him to the node including his rotation successor, there
cannot exist any cycle in the anti-arborescence, as such a cycle would induce an exposed
man-rotation in the modified SM instance which would contradict the uniqueness of M∗ in
the modified SM instance.

In the same way one can construct an anti-arborescence of cost |FW | in HW . The
constructed anti-arborescences together have weight at most |FW |+ |FU | ≤ |F | ≤ `, as any
arc in FW ∩ FU would be a blocking pair for M∗.

(⇐) Let AU be an anti-arborescence in HU , and AW be an anti-arborescence in HW .
For every arc (vm, t) ∈ AU , we delete the acceptability of all pairs {m,w′} with m pre-
ferring M∗(m) to w′ and w′ preferring m to M∗(w′). For every arc (vm, vm̃) ∈ AU , we
delete the acceptability of all pairs {m,w′} with m preferring w′ to M∗(m̃), and M∗(m)

1039

Boehmer, Bredereck, Heeger, & Niedermeier

to w′, and w′ preferring m to M∗(w′). After these deletions, w̃ is the rotation successor
of m. Let FU denote the set of pairs deleted. We proceed with AW analogously, and denote
as FW the set of deleted pairs. By construction, AU has cost |FU |, and AW has cost |FW |.

Assume that M∗ is not the unique stable matching after deleting the pairs from FU∪FW .
Then, without loss of generality, a man-rotation is exposed in M∗: (mi1 , wj1), . . . , (mir , wjr).
As we already observed, the anti-aborescence AU contains all arcs (vm, vm̃) where w̃ is m’s
rotation-successor (after the deletion of FU). Thus, AU contains the arcs (vmik , vmik+1

)

for all k ∈ [r] (all indices are taken modulo r). This implies that AU contains a cycle, a
contradiction to AU being an anti-arborescence.

We conclude this section by constructing an XP algorithm for Exact-Unique-
Reorder parameterized by ` which runs in O(2`n2`+2) time. This algorithm is described
in Algorithm 3 and requires as input an instance of Exact-Unique-Reorder consisting
of an SM instance I = (U,W,P), a complete matching M∗, and a budget `.

The algorithm starts by guessing the subsets of men XU ⊆ U and women XW ⊆ W
of summed size ` whose preferences we reorder (Line 1). We reject a guess if there exists
a blocking pair {m,w} ∈ bp(M∗, I) such that m /∈ XU and w /∈ XW , as in this case it
is not possible to resolve this blocking pair using the guessed agents (Line 5). Moreover,
for each m ∈ XU , we guess his rotation-successor sReorder

M∗ (m) ∈ W ∪ {∅} after the re-
orderings and for each w ∈ XW , we guess her rotation successor sReorder

M∗ (w) ∈ U ∪ {∅}
(Lines 2 and 3). We reject the guess if it is impossible for an agent a ∈ XU ∪ XW to
make sReorder

M∗ (a) a’s rotation successor. This is the case if sReorder
M∗ (a) /∈ XU ∪ XW

and sReorder
M∗ (a) prefers M(sReorder

M∗ (a)) to a (Line 7). Further, if there exists some m ∈ XU

for which we have guessed that sReorder
M∗ (m) = ∅ and there exists some w ∈ W \XW that

prefers m to M∗(w), then we reject the guess, as in this case if m ranks w above M∗(m), we
create a blocking pair and if m ranks M∗(m) above w, then m has a rotation successor; the
same holds with roles of women and men swapped (Line 9). We also check whether there
is a man-woman pair (m,w) with m ∈ XU and w ∈ XW such that we guessed that they
are their mutual rotation successor and reject a guess in this case (Line 11), because if w is
the rotation successor of m, then m prefers M∗(m) to w, and if m is the rotation successor
of w, then m prefers w to M∗(m) and these two conditions clearly cannot be satisfied at
the same time.

In the end, for all agents a ∈ XU ∪XW , we will reorder their preferences such that their
rotation successor is ranked directly after M∗(a). The only influence that the preferences
of a can have on the rotation successor of another agent a′ is whether a prefers a′ to M∗(a) or
not. By Observation 3, it follows that in order to make M∗ the unique stable matching, we
only need to decide which agents are in the first part of a’s preferences (and can then order
them arbitrarily before M∗(a) in the preferences of a). Again, by Observation 3, this can
be solved for the men in XU and women in XW separately (with the exception that we need
to ensure that there is no man-woman pair which are mutual rotation successors; however,
this may happen only if both agents are contained in XU ∪XW , and we exclude that this
happens in Line 11): Selecting the first part of the preferences of w ∈ XW only influences
the rotation successors of all men. Similarly, selecting the first part of the preferences
of m ∈ XU only influences whether there exists a woman-rotation. Consequently, it is
possible to split the problem into two parts. We describe how to determine the preferences

1040

Bribery and Control in Stable Marriage

Input: An SM instance I = (U,W,P), a complete matching M∗, and a budget `.
1 Guess sets XU ⊆ U and XW ⊆W with |XU ∪XW | ≤ `;
2 For each m ∈ XU , guess sReorder

M∗ (m) ∈W ∪ {∅};
3 For each w ∈ XW , guess sReorder

M∗ (w) ∈M ∪ {∅};
4 if there exists a blocking pair {m,w} for M∗ with m /∈ XU and w /∈ XW then
5 Reject this guess;
6 if there exists an agent a ∈ XU ∪XW with sReorder

M∗ (a) /∈ XU ∪XW and
sReorder
M∗ (a) preferring M(sReorder

M∗ (a)) to a then
7 Reject this guess;
8 if there exists m ∈ XU and a woman w ∈W \XW such that sReorder

M∗ (m) = ∅ and
w prefers m to M∗(w) or there exists w ∈ XW and m ∈ U \XU such that
sReorder
M∗ (w) = ∅ and m prefers w to M∗(m) then

9 Reject the guess;
10 if there exists m ∈ XU and w ∈ XW such that m = sReorder

M∗ (w) and
w = sReorder

M∗ (m) then
11 Reject the guess;
12 Let H be an empty directed graph;
13 Add a vertex t to H;
14 foreach {m,w} ∈M∗ do
15 Add a vertex vm to H;
16 foreach m ∈ XU do
17 Add arc (vm, v) to H, where v := t if sReorder

M∗ (m) = ∅ and v := vm′ with
m′ := M∗(sReorder

M∗ (m)) otherwise;

18 foreach m ∈ U \XU do
19 Let s̃M∗(m) ∈W \XW be the woman from W \XW which m likes most such

that m prefers M∗(m) to s̃M∗(m), and s̃M∗(m) prefers m to M∗
(
s̃M∗(m)

)
;

20 if no such s̃M∗(m) exists then
21 Add (vm, t) to H;
22 foreach w ∈ XW such that m prefers M∗(m) to w and sReorder

M∗ (w) 6= m do
23 Add arc (vm, vm′) to H, where m′ := M∗(w);

24 else
25 Add arc (vm, vm′) to H, where m′ := M∗(s̃M∗(m));
26 foreach w ∈ XW such that m prefers M∗(m) to w to s̃M∗(m) and

sReorder
M∗ (w) 6= m do

27 Add arc (vm, vm′) to H, where m′ := M∗(w);

28 if H does not contain a spanning anti-arborescence then
29 Reject this guess;
30 Repeat Lines 12–29 with roles of women and men swapped;
31 Accept this guess;

Algorithm 3: An XP algorithm wrt. ` for Exact-Unique-Reorder.

1041

Boehmer, Bredereck, Heeger, & Niedermeier

of all w ∈ XW , thereby, resolving all man-rotations. The woman-rotations can be resolved
symmetrically (Line 30).

To determine how to reorder the preferences of all w ∈ XW , we reduce the problem to
an instance of Spanning Anti-Arborescence (Lines 12–27). We construct the directed
graph as follows. For each pair {m,w} ∈M∗, we introduce a vertex vm (Line 15). Moreover,
we add a sink t (Line 13). For allm ∈ XU , we add an arc from vm to the vertex corresponding
to the man matched to the guessed rotation successor ofm inM∗, i.e., vM∗(sReorder

M∗ (m)), or to t

if sReorder
M∗ (m) = ∅ (Line 17). Now, we add for each two vertices vm and vm′ with m ∈ U\XU

and m′ ∈ XU an arc from vm to vm′ if we can reorder the guessed agents’ preferences such
that M∗(m′) is m’s rotation successor (Lines 18–27).

More formally, for each m ∈ U \ XU , we denote as s̃M∗(m) agent m’s most-preferred
woman w ∈W \XW who prefers m to M∗(w) and is ranked after M∗(m) by m (independent
of how the preferences of the guessed agents are reordered, m cannot have a rotation suc-
cessor to which he prefers s̃M∗(m)). We deal with the case that s̃M∗(m) is not well-defined
separately below. Now, for each w′ ∈ XW , who is ranked between M∗(m) and s̃M∗(m) in
the preferences of m and fulfills sReorder

M∗ (w′) 6= m, we add an arc from vm to vM∗(w′) (for
those women, we can decide whether they rank m before or after M∗(w′) and thus whether
they become m’s rotation successor or not). Note that we require sReorder

M∗ (w′) 6= m as
otherwise w′ must prefer M∗(w′) to m and thus cannot be the rotation successor of m.
Moreover, we add an arc from vm to vM∗(s̃M∗ (m)) (Lines 25 and 27). As mentioned above,
it may happen that s̃M∗(m) is undefined for some m ∈ U \ XU . In this case, we add
an arc between vm and vM∗(w′) for each w′ ∈ XW which m ranks below M∗(m) and ful-

fills sReorder
M∗ (w′) 6= m and an arc from vm to t (Lines 21 and 23). We call the resulting

graph HU and the graph constructed using the same algorithm with the roles of men and
women switched HW .

We compute an anti-arborescence in HU . In the anti-arborescence, for each vm, the
end point of its outgoing arc corresponds to the rotation successor of m in the modified
instance. To ensure this, we construct the preferences of all women w ∈ XW as follows.
For each w ∈ XW , we rank all men m ∈ U such that there is an arc from vm to vM∗(w)

in the anti-arborescence in an arbitrary order before M∗(w), while we place the guessed
man sReorder

M∗ (w) directly after M∗(w) and add the remaining agents in an arbitrary order
after sReorder

M∗ (w). If sReorder
M∗ (w) = ∅, then we place all men m ∈ U such that there is

an arc from vm to vM∗(w) in the anti-arborescence before M∗(w) and all other men in an
arbitrary order after M∗(w).

We use the same procedure to determine the preferences of all m ∈ XU . Thereby, if
there exist anti-arborescences in HU and HW , we are able to reorder the preferences of the
guessed agents such that M∗ becomes the unique stable matching. Thus, we return YES in
this case. Otherwise, we reject this guess (Lines 29 and 30), continue with the next guess
and return NO after rejecting the last guess.

It remains to prove the correctness of the algorithm:

Lemma 11. If the algorithm accepts a guess, then there exists a solution to the given
instance of Exact-Unique-Reorder.

Proof. We now prove that for every pair (AU ,AW) of anti-arborescences found in the
graphs HU and HW , the resulting reorderings of the preferences make M∗ the unique stable

1042

Bribery and Control in Stable Marriage

matching. First we show that the preferences are well-defined: The only case in which we
require for two agents a and a′ that a prefers a′ to M∗(a′) and a prefers M∗(a′) to a′ is
when a′ is the rotation successor of a and a is the rotation successor of a′. However, due
to the check in Line 11, this is not possible. For the sake of contradiction, let us assume
that M∗ is not the unique stable matching. There are two possibilities, either M∗ is not a
stable matching or M∗ is not the unique stable matching.

First, we show that M∗ is stable. Since we rejected each guess containing a blocking
pair {m,w} with m ∈ U \XU and w ∈W \XW , each blocking pair involves at least one agent
from XU ∪XW . Fix a blocking pair {m,w}. We assume without loss of generality that m ∈
XU . The algorithm constructs the preferences of m such that m only prefers a woman w
to M∗(m) if the arc from vw to vM∗(m) is part of the anti-arborescence AW . However, such
an arc only exists in HW if w ranks m below M∗(w), which implies that {m,w} cannot be
blocking.

Now we show that M∗ is the unique stable matching. To do so, we show that for
each man m with (vm, vM∗(w)) ∈ AU , the rotation successor of m is the women w. If AU
contains the arc (vm, t), then m has no rotation successor. A symmetric statement also
holds for each woman. From this, the uniqueness of M∗ easily follows, as for any rotation
(without loss of generality a man-rotation) (mi1 , wj1), . . . , (mir , wjr) exposed in M∗, the
anti-arborescence AU then contains the arcs (vmij , vmij+1

) for all j ∈ [r], and therefore
contains a cycle, a contradiction to AU being an anti-arborescence.

So consider a man m with (vm, vM∗(w)) ∈ AU . By the definition of HU , man m
prefersM∗(m) to w. We claim that for every woman w′ ∈W whomm ranks betweenM∗(m)
and w, it holds that w′ prefers M∗(w′) to m after the modifications. If w′ ∈ XW , then
we reorder the preferences of w′ in this way; otherwise, this follows since HU contains
edge (vm, vM∗(w)). It remains to show that w prefers m to M∗(w). If w ∈ XW , then we
reordered the preferences of w such that w prefers m to M∗(w). Otherwise, woman w
prefers m to M∗(w) since HU contains edge (vm, vM∗(w)). If (vm, t) ∈ AU , then analogous
arguments show that any woman w after M∗(m) in m’s preferences does not prefer m
to M∗(w).

Lemma 12. If the algorithm rejects every guess, then there exists no solution to the given
instance of Exact-Unique-Reorder.

Proof. For the sake of contradiction, let us assume that the given instance of Exact-
Unique-Reorder admits a solution. We claim that there exists a guess of XU ∪XW and
their rotation successors for which HU and HW both admit anti-arborescences. This leads
to a contradiction, thereby proving the lemma.

Assume that there exists a set YA = YU ∪YW with YU ⊆ U and YW ⊆W of ` agents and
a reordering of the preferences of these agents such that M∗ is the unique stable matching in
the resulting instance. Let I ′ denote the manipulated instance and let sI

′
M∗(m) denote the

rotation successor of some m ∈ U in I ′ and sI
′
M∗(w) the rotation successor of some w ∈W .

Then, there exists a guess where XU = YU , XW = YW , and for all m ∈ XU , his rotation
successor is sI

′
M∗(m), i.e., sReorder

M∗ (m) = sI
′
M∗(m), and for all w ∈ XU , her rotation successor

is sI
′
M∗(w). First of all note that the guess is not immediately rejected, as for each blocking

pair one of the involved agents needs to be part of XU ∪ XW , and no agent from XA

without a rotation successor can be preferred by an unmodified agent of opposite gender to

1043

Boehmer, Bredereck, Heeger, & Niedermeier

its partner in M∗. Furthermore, there cannot be a man-woman pair (m,w) with m ∈ XU

and w ∈ XW such that they are to be their mutual rotation successor: If w is the rotation
successor of m, then m prefers M∗(m) to w, and if m is the rotation successor of w, then m
prefers w to M∗(m) and these two conditions clearly cannot be satisfied at the same time.

We describe how to construct an anti-arborescence AU for HU while the construction
for AW works analogously. For each m ∈ U , we include the arc (vm, vM∗(sI′

M∗ (m))
) in AU

and the arc (vm, t) if sI
′
M∗(m) = ∅. As there is no rotation exposed in M∗ in I ′, the resulting

graph AU is acyclic and every vertex but t has out-degree exactly 1, i.e., AU is indeed an
anti-arborescence.

It remains to show that AU is a subgraph of HU . Fix an arc (vm, vM∗(sI′
M∗ (m))

) ∈ AU
(where vM∗(∅) := t). For all m ∈ XU , this arc is contained in HU , as we have already

guessed sI
′
M∗(m) and added the arc (vm, vM∗(sI′

M∗ (m))
) to HU . For all m ∈ U \ XU , the

woman sI
′
M∗(m) needs to be ranked below M∗(m) in m’s preferences. Moreover, by defini-

tion, sI
′
M∗(m) is the first woman after M∗(m) in m’s preferences who prefers m over M∗(w).

Thereby, w cannot be ranked after the first woman s̃M∗(m) ∈ W \ XW who prefers m
to M∗(s̃M∗(m)). Thus, if w is not s̃M∗(m), then w is contained in XW . In fact, for all such
women w there exists an arc from vm to vM∗(w) in HU .

The developed algorithm runs in O(2`n2`+2) time since we iterate over up to
(

2n
`

)
guesses

forXA and for each of these guesses, we iterate overO(n`) guesses for the rotation successors.
For each guess of XA and the rotation successors, graph H and the anti-arborescence can
be computed in O(n2) time. Altogether, the following theorem results from Lemma 11 and
Lemma 12:

Theorem 8. Exact-Unique-Reorder is solvable in O(2`n2`+2) time.

6. Conclusion

We provided a first comprehensive study of the computational complexity of several manip-
ulative actions and goals in the context of the Stable Marriage problem. Our diverse
set of computational complexity results is surveyed in Table 1.

Several challenges for future research remain. In contrast to the constructive setting
considered here, there is also a destructive view on manipulation, where the goal is to pre-
vent a certain constellation (see Section 3.3.2 for a discussion which of our results translate).
Moreover, for the Constructive-Unique scenario not presented here (where one edge shall
be contained in every stable matching), our hardness results for Constructive-Exists carry
over, as the stable matchings constructed in the proofs of Theorems 1 to 3 are indeed unique.
However, the algorithm for Constructive-Exists-Delete as well as the 2-approximation
algorithm for Constructive-Exists-Reorder do not work for Constructive-Unique. A
very specific open question is whether the Exact-Unique-Swap problem is fixed-parameter
tractable when parameterized by the budget. Additionally, there is clearly a lot of room
for investigating more manipulative actions. For instance, a manipulator might be able
to divide the set of agents into two parts, where a separate matching for each part needs
to be found and agents from different parts cannot form a blocking pair. Further, in the
presence of ties, assuming a less powerful manipulator, a manipulator might only be able

1044

Bribery and Control in Stable Marriage

to break ties in the preferences (whether this manipulation can have an impact depends
however on the concrete stability concept and the manipulation goal considered). Notably,
in several matching mechanisms used in practice, e.g., in the context of matching students
to schools in Estonia (Triin, Põder, & Veski, 2014) and in several larger US cities (Erdil
& Ergin, 2008) and in the context of assigning residents to hospitals in Scotland (Irving,
2011), ties in the agent’s preferences are broken uniformly at random. Clearly, one may
also extend the study of external manipulation to stable matching problems beyond Sta-
ble Marriage. A further natural extension of our work would be to consider weighted
manipulation, where one assumes that each possible manipulative action comes at a specific
cost. All our results for the two Exact settings as well as the hardness results for Construc-
tive carry over to the weighted case in a straightforward way, while the polynomial-time
algorithm for Constructive-Exists-Delete does not work anymore.

Lastly, it might also be interesting to analyze the power of different manipulative ac-
tions in real-world scenarios. We already did some very preliminary experiments for all
polynomial-computable cases on synthetic data having between 30 and 200 agents, where
the preferences of agents were drawn uniformly at random from all possible preferences.
The manipulation goal was also set uniformly at random. The following two observations
were particularly surprising to us: In the Constructive-Exists setting, Delete operations
seem to be quite powerful, as most of the time deleting a moderately low number of agents
(around 10%) sufficed. In the Exact-Exists setting, Reorder operations are not as powerful
as one might intuitively suspect, as, on average, close to half of the agents needed to be
modified—note that there always exists a trivial solution where the preferences of all agents
from one gender are reordered.

Acknowledgments

An extended abstract of the paper appeared in the proceedings of the 13th International
Symposium on Algorithmic Game Theory (SAGT 2020), Springer LNCS 12283, pages 163–
177, 2020. Main work done while Robert Bredereck was with Technische Universität Berlin.
Niclas Boehmer was supported by the DFG project MaMu (NI 369/19). Klaus Heeger was
supported by the DFG Research Training Group 2434 “Facets of Complexity”.

References

Anwar, A. A., & Bahaj, A. S. (2003). Student project allocation using integer programming.
IEEE Transactions on Education, 46 (3), 359–367.

Aziz, H., Seedig, H. G., & von Wedel, J. K. (2015). On the susceptibility of the deferred
acceptance algorithm. In Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS ’15), pp. 939–947.

Bartholdi III, J. J., Tovey, C. A., & Trick, M. A. (1992). How hard is it to control an
election?. Mathematical and Computer Modelling, 16 (8-9), 27–40.

Boehmer, N., Bredereck, R., Faliszewski, P., & Niedermeier, R. (2021). Winner robustness
via swap- and shift-bribery: Parameterized counting complexity and experiments. In

1045

Boehmer, Bredereck, Heeger, & Niedermeier

Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJ-
CAI ’21), pp. 52–58. ijcai.org.

Boehmer, N., Bredereck, R., Knop, D., & Luo, J. (2020). Fine-grained view on bribery
for group identification. In Proceedings of the 29th International Joint Conference on
Artificial Intelligence (IJCAI ’20), pp. 67–73.

Cechlárová, K., & Fleiner, T. (2005). On a generalization of the stable roommates problem.
ACM Transactions on Algorithms, 1 (1), 143–156.

Chen, J., Skowron, P., & Sorge, M. (2019). Matchings under preferences: Strength of sta-
bility and trade-offs. In Proceedings of the 2019 ACM Conference on Economics and
Computation (EC ’19), pp. 41–59.

Clark, S. (2006). The uniqueness of stable matchings. Contributions in Theoretical Eco-
nomics, 6 (1), 8.

Consuegra, M. E., Kumar, R., & Narasimhan, G. (2013). Comment on “on the uniqueness
of stable marriage matchings” [Economic Letters 69(1):1–8, 2000]. Economics Letters,
121 (3), 468.

Cseh, Á., & Heeger, K. (2020). The stable marriage problem with ties and restricted edges.
Discrete Optimization, 36, 100571.

Downey, R. G., & Fellows, M. R. (2013). Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer.

Drgas-Burchardt, E. (2013). A note on the uniqueness of stable marriage matching. Dis-
cussiones Mathematicae. Graph Theory, 33 (1), 49–55.

Edmonds, J. (1967). Optimum branchings. Journal of Research of the National Bureau of
Standards B, 71 (4), 233–240.

Eeckhout, J. (2000). On the uniqueness of stable marriage matchings. Economics Letters,
69 (1), 1–8.

Erdil, A., & Ergin, H. (2008). What’s the matter with tie-breaking? Improving efficiency
in school choice. American Economic Review, 98 (3), 669–89.

Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. A. (2009). How hard is bribery in
elections?. Journal of Artificial Intelligence Research, 35, 485–532.

Faliszewski, P., & Rothe, J. (2016). Control and bribery in voting. In Handbook of Compu-
tational Social Choice, pp. 146–168. Cambridge University Press.

Faliszewski, P., Skowron, P., & Talmon, N. (2017). Bribery as a measure of candidate
success: Complexity results for approval-based multiwinner rules. In Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’17),
pp. 6–14.

Gabow, H. N., Galil, Z., Spencer, T. H., & Tarjan, R. E. (1986). Efficient algorithms for
finding minimum spanning trees in undirected and directed graphs. Combinatorica,
6 (2), 109–122.

Gai, A., Mathieu, F., de Montgolfier, F., & Reynier, J. (2007). Stratification in P2P net-
works: Application to BitTorrent. In Proceedings of the 27th IEEE International
Conference on Distributed Computing Systems (ICDCS ’07).

1046

Bribery and Control in Stable Marriage

Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage. The
American Mathematical Monthly, 69 (1), 9–15.

Gelain, M., Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2011). Male optimal
and unique stable marriages with partially ordered preferences. In Proceedings of
the First and Second International Workshop on Collaborative Agents, Research and
Development (CARE ’09/’10), pp. 44–55.

Gonczarowski, Y. A. (2014). Manipulation of stable matchings using minimal blacklists. In
Proceedings of the 15th ACM Conference on Economics and Computation (EC ’14),
p. 449.

Gusfield, D. (1987). Three fast algorithms for four problems in stable marriage. SIAM
Journal on Computing, 16 (1), 111–128.

Gusfield, D., & Irving, R. W. (1989). The Stable Marriage Problem - Structure and Algo-
rithms. Foundations of Computing Series. MIT Press.

Heyneman, S., Anderson, K., & Nuraliyeva, N. (2008). The cost of corruption in higher
education. Comparative Education Review, 52 (1), 1–25.

Hopcroft, J. E., & Karp, R. M. (1973). An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2 (4), 225–231.

Hosseini, H., Umar, F., & Vaish, R. (2021). Accomplice manipulation of the deferred ac-
ceptance algorithm. In Proceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI ’21), pp. 231–237. ijcai.org.

Hussain, S., Gamage, K. A., Sagor, M. H., Tariq, F., Ma, L., & Imran, M. A. (2019).
A systematic review of project allocation methods in undergraduate transnational
engineering education. Education Sciences, 9 (4), 258.

Irving, R. (2011). Matching practices for entry-labor markets – Scotland..
https://www.matching-in-practice.eu/wp-content/uploads/2013/05/MiP_

-Profile_No.3.pdf.

Irving, R. W., Manlove, D., & Scott, S. (2003). Strong stability in the hospitals/residents
problem. In Proceedings of the 20th Annual Symposium on Theoretical Aspects of
Computer Science (STACS ’03), pp. 439–450.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Proceedings of a
symposium on the Complexity of Computer Computations, held March 20-22, 1972,
at the IBM Thomas J. Watson Research Center, pp. 85–103.

Kazakov, D. (2001). Coordination of student project allocation.. https://www-users.cs.
york.ac.uk/kazakov/papers/proj.pdf.

King, V., Rao, S., & Tarjan, R. E. (1994). A faster deterministic maximum flow algorithm.
Journal of Algorithms, 17 (3), 447–474.

Knuth, D. E. (1976). Mariages stables et leurs relations avec d’autres problèmes combi-
natoires. Les Presses de l’Université de Montréal, Montreal, Que. Introduction à
l’analyse mathématique des algorithmes, Collection de la Chaire Aisenstadt.

1047

Boehmer, Bredereck, Heeger, & Niedermeier

Lebedev, D., Mathieu, F., Viennot, L., Gai, A., Reynier, J., & de Montgolfier, F. (2007).
On using matching theory to understand P2P network design. In Proceedings of the
International Network Optimization Conference 2007 (INOC ’07).

Liu, Q., & Peng, Y. (2015). Corruption in college admissions examinations in China. In-
ternational Journal of Educational Development, 41, 104–111.

Mai, T., & Vazirani, V. V. (2018a). Finding stable matchings that are robust to errors
in the input. In Proceedings of the 26th Annual European Symposium on Algorithms
(ESA ’18), pp. 60:1–60:11.

Mai, T., & Vazirani, V. V. (2018b). Stable matchings, robust solutions, and finite distribu-
tive lattices. arXiv preprint, arXiv:1804.05537 [cs.DM].

Manlove, D., Irving, R. W., Iwama, K., Miyazaki, S., & Morita, Y. (2002). Hard variants
of stable marriage. Theoretical Computer Science, 276 (1-2), 261–279.

Manlove, D. F. (2013). Algorithmics of Matching Under Preferences, Vol. 2 of Series on
Theoretical Computer Science. WorldScientific.

Orlin, J. B. (2013). Max flows in O(nm) time, or better. In Proceedings of the 45th ACM
Symposium on Theory of Computing (STOC ’13), pp. 765–774.

Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2011). Manipulation complexity and
gender neutrality in stable marriage procedures. Autonomous Agents and Multi-Agent
Systems, 22 (1), 183–199.

Reny, P. J. (2021). A simple sufficient condition for a unique and student-efficient stable
matching in the college admissions problem. Economic Theory Bulletin, 9, 7–9.

Roth, A. E. (1982). The economics of matching: Stability and incentives. Mathematics of
Operations Research, 7 (4), 617–628.

Roth, A. E. (1986). On the allocation of residents to rural hospitals: a general property of
two-sided matching markets. Econometrica, 54 (2), 425–427.

Shen, W., Tang, P., & Deng, Y. (2018). Coalition manipulation of Gale-Shapley algorithm.
In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI ’18),
pp. 1210–1217.

Teo, C., Sethuraman, J., & Tan, W. (2001). Gale-Shapley stable marriage problem revisited:
Strategic issues and applications. Management Science, 47 (9), 1252–1267.

Triin, L., Põder, K., & Veski, A. (2014). Matching practices for elementary schools – Es-
tonia.. https://www.matching-in-practice.eu/wp-content/uploads/2014/02/

MiP_-Profile_No.18.pdf.

1048

